Skip to main content
Log in

Secondary Metabolites from the Marine Tunicate “Phallusia nigra” and Some Biological Activities

  • BIOCHEMISTRY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Different extracts of solitary marine tunicates have attracted attention as a source of amazing secondary metabolites with a wide range of promising potential biological effects. In the current study the antibacterial activity of the Persian Gulf marine tunicate “Phallusia nigra, against the Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli were investigated. The total flavonoid, phenolic, and alkaloid contents as well as, identification of their bioactive molecules were also analyzed. The tunicate extract showed significant antibacterial activities against the tested gram-negative bacteria strains. Chemical investigation of the methanol-chloroform extract by the GC-MS method, afforded the 23 compounds (C1C23), with incredible and different structures. The extract had the highest amounts of flavonoid and phenolic contents. The result of flavonoids to phenolics ratio showed that the extract is rich in flavonoids. Amongst, 13 compounds including the C5, C9, C10, C12C16, and C18C22 belonged to different groups of flavonoids. From six nitrogenous organic compounds C1C3, C7, C11, and C23 with a total abundance of about 36.74%, the bioactive heterocyclic compounds, C1, C7, and C23 have indole alkaloids, phthalazines, and thiadiazoles structures with potential known diverse pharmacological properties. At least, a portion of the antimicrobial and antioxidant activities may be due to the presence of these unique bioactive compounds in the extract. However, this marine organism can be subjected to different biological, phytochemical, and pharmacological and nutraceutical studies to find out the novel drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Agbo, M.O., Uzor, P.F., Nneji, U.N.A., Eze-Odurukwe, C.U., Ogbatue, U.B., and Mbaoji, E.C., Antioxidant, total phenolic and flavonoid content of selected Nigerian medicinal plants, Dhaka Univ. J. Pharm. Sci., 2015, vol. 14, pp. 35–41.

    Article  CAS  Google Scholar 

  2. Ajanal, M., Gundkalle, M.B., and Nayak, S.U., Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer, Ancient Sci. Life, 2012, vol. 31, pp. 198–201.

    Article  Google Scholar 

  3. Aliyu, A.B., Ibrahim, M.A., Musa, A.M., Bulus, T., and Oyewale A.O. Phenolics content and antioxidant capacity of extracts and fractions of Verninia blumeoides (Asteraceae), Int. J. Biol. Chem., 2011, vol. 5, pp. 352–359.

    Article  CAS  Google Scholar 

  4. Amarlal, S., Mira, L., Nogueira, J.M., Da Silva, A. P., and Florencio, M.H., Plant extracts with anti-inflammatory properties—a new approach for characterization of their bioactivity, Bioorg. Med. Chem., 2009, vol. 17, pp. 1876–1883.

    Article  CAS  Google Scholar 

  5. Ananthan, G., Mohamed, H.S., Sivaperumal, P., and Ali, H.A.J., Screening for novel drug properties from marine tunicate against human urinary tract pathogens, J. Pharm. Res., 2011a, vol. 4, no. 2, pp. 356–357.

    Google Scholar 

  6. Ananthan, G., Sivaperumal, P., and Mohamed Hussain, S., Antibacterial potential of marine ascidian Phallusia arabica against isolated urinary tract infections bacterial pathogens, A.J.A.S., 2011b, vol. 5, pp. 208–212.

    Book  Google Scholar 

  7. Asif, M., Some recent approaches of biologically active substituted pyridazine and phthalazine drugs, Curr. Med. Chem., 2012, vol. 19, no. 18, pp. 2984–2991.

    Article  CAS  PubMed  Google Scholar 

  8. Ayuningrum, D., Liu, Y., Riyanti, Sibero, M.T., Kristiana, R., Asagabaldan, M.A., Wuisan, Z.G., Trianto, A., Radjasa, O.K., Sabdono, A., and Schäberle, T.F., Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds, PLoS One, 2019, vol. 14, no. 3. e0213797. https://doi.org/10.1371/journal.pone.0213797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barmak, A., Niknam, K., Mohebbi, G.H., and Pournabi, H., Antibacterial studies of hydroxyspiro[indoline-3,9-xanthene]trione against spiro[indoline3,9-xanthene]trione and their use as acetyl and butyrylcholinesterase inhibitors, Microb. Pathog., 2019, vol. 130, pp. 95–99.

    Article  CAS  PubMed  Google Scholar 

  10. Choi, N.D., Zeng, J., Choi, B.D., and Ryu, H.S., Shelf life of bottled sea squirt Halocynthia roretzi meat packed in vegetable oil (BSMO), Fish. Aquatic. Sci., 2014, vol. 17, pp. 37–46.

    CAS  Google Scholar 

  11. Cushnie, T.P.T. and Lamb, A.J., Antimicrobial activity of flavonoids, Int. J. Antimicrob. Agents, 2005, vol. 26, no. 5, pp. 343–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidson, B.S., Ascidians: producers of amino acid derived metabolites, Chem. Rev., 1993, vol. 93, pp. 1771–1791.

    Article  CAS  Google Scholar 

  13. De Sá Alves, F.R., Barreiro, E.J., and Fraga, C.A., From nature to drug discovery: the indole scaffold as a “privileged structure,” Mini Rev. Med. Chem., 2009, vol. 9, no. 7, pp. 782–793.

    Article  PubMed  Google Scholar 

  14. Donia, M.S., Ravel, J., and Schmidt, E.W., A global assembly line for cyanobactins, Nat. Chem. Biol., 2008, vol. 4, no. 6, pp. 341–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elsebeth, J.S., Influence of benthic fauna on trimethylamine concentrations in coastal marine sediments, Glob. Mar. Ecol. Prog., 1987, vol. 39, pp. 15–21.

    Article  Google Scholar 

  16. Elya, B., Yasman, and Edawati, Z., Antioxidant activity of the ascidian marine invertebrates, Didemnum SP. Int. J. App. Pharm., 2018, vol. 10, pp. 82–86.

    Article  CAS  Google Scholar 

  17. Falony, G., Vieira-Silva, S., and Raes, J., Microbiology meets Big Data: the case of gut microbiota-derived trimethylamine, Annu. Rev. Microbiol., 2015, vol. 69, pp. 305–321.

    Article  CAS  PubMed  Google Scholar 

  18. Foroumadi, A., Emami, S., Hassanzadeh, A., Rajaee, M., Sokhanvar, K., Moshafi, M.H., and Shafiee, A., Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives, Bioorg. Med. Chem. Lett., 2005, vol. 15, pp. 4488–4492.

    Article  CAS  PubMed  Google Scholar 

  19. Freed, W.J. Prevention of strychnine-induced seizures and death by the N-methylated glycine derivatives betaine, dimethylglycine and sarcosine, Pharmacol. Biochem. Behav., 1985, vol. 22, no. 4, pp. 641–643.

    Article  CAS  PubMed  Google Scholar 

  20. Graber, C.D., Goust, J.M., Glassman, A.D., Kendall, R., and Loadholt, C.B., Immunomodulation properties of dimethylglycine in humans, J. Infect. Dis., 1981, vol. 143, pp. 101–105.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta, A., Mishra, P., Kashaw, S.K., Jatav, V., and Stables, J.P., Synthesis and anticonvulsant activity of some novel 3-arylamino/amino-4-aryl-5-imino-delta(2)-1,2,4-thiadiazoline, Eur. J. Med. Chem., 2008, vol. 43, pp. 749–754.

    Article  CAS  PubMed  Google Scholar 

  22. Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K., and Kinoshita, T., Mode of antibacterial action of retrochalcones from Glycyrrhiza inflate, Phytochemistry, 1998, vol. 48, no. 1, pp. 125–129.

    Article  CAS  PubMed  Google Scholar 

  23. HCHSCC (House of Commons Health and Social Care Committee Antimicrobial Resistance), Eleventh Report of Session 2017–19 Report, together with formal minutes relating to the report Ordered by the House of Commons to be printed October 18, 2018. https://publications.parliament.uk/pa/cm201719/cmselect/cmhealth/962/962.pdf.

  24. Heim, K.E., Tagliaferro, A.R., and Bobilya, D.J., Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, J. Nutr. Biochem., 2002, vol. 13, no. 10, pp. 572–584.

    Article  CAS  PubMed  Google Scholar 

  25. Jaffarali, H.A., Tamilselvi, M., and Sivakumar, V., Antibacterial activity of the marine ascidians Phallusia nigra and Herdmania pallida from the Tuticorin coast, Indian J. Biol. Res. Thessalon., 2008, vol. 10, pp. 171–179.

    Google Scholar 

  26. Kumar, S., Pandey, and Abhay, K., Chemistry and biological activities of flavonoids: an overview, Sci. World J., 2013. https://doi.org/10.1155/2013/162750

  27. Kuş, C., Ayhan-Kılcıgil, G., Özbey, S., Kaynak, F.B., Kaya, M., Çoban, T., and Can-Eke, B., Synthesis and antioxidant properties of novel N-methyl-1,3,4-thiadiazol-2-amine and 4-methyl-2H-1,2,4-triazole-3(4H)-thione derivatives of benzimidazole class, Bioorg. Med. Chem., 2008, vol. 16, pp. 4294–4303.

    Article  PubMed  CAS  Google Scholar 

  28. Lamani, R.S., Shetty, N.S., Kamble, R.R., Khazi, I.A.M. Synthesis and antimicrobial studies of novel methylene bridged benzisoxazolyl imidazo[2,1-b][1,3,4]thiadiazole derivatives., Eur. J. Med. Chem., 2008, vol. 44, pp. 2828–2833.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, M.Y., Lin, Y.R., Tu, Y.S., Tseng, Y.J., Chan, M.H., and Chen, H.H., Effects of sarcosine and N,N-dimethylglycine on NMDA receptor-mediated excitatory field potentials, J. Biomed. Sci., 2017, vol. 24, no. 1, p. 18. https://doi.org/10.1186/s12929-016-0314-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin, J.C., Chan, M.H., Lee, M.Y., Chen, Y.C., and Chen, H.H., N,N-Dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2016, vol. 71, pp. 7–13.

    Article  CAS  Google Scholar 

  31. Meenakshi, V.K., Biology of a few chosen asicidians, Ph.D. Thesis, Tirunelveli: M.S. University, 1997, pp. 157–173.

  32. Mendiola, J., Hernández, H., Sariego, I., Rojas, L., Otero, A., Ramírez, A., Chávez Mde, L., Payrol, J.A., and Hernández, A., Antimalarial activity from three ascidians: an exploration of different marine invertebrate phyla, Trans. R. Soc. Trop. Med. Hyg., 2006, vol. 100, no. 10, pp. 909–916.

    Article  CAS  PubMed  Google Scholar 

  33. Mishra, A.K., Mishra, A., Kehri, H.K., Sharma, B., and Pandey, A.K., Inhibitory activity of Indian spice plant Cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds, Biomed. Res. Int., 2009, vol. 8, p. 9. https://doi.org/10.1186/1476-0711-8-9

    Article  Google Scholar 

  34. Mishra, A., Sharma, A.K., Kumar, S., Saxena, A.K., and Pandey, A.K., Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities, Biomed. Res. Int., 2013, p. 915436. https://doi.org/10.1155/2013/915436

  35. Mohebbi, G.H., Arshadi, S.S., Nabipour, I., and Pourkhalili, K., Marine tunicate, the electuary of Mithridates, Iran. South Med. J., 2015, vol. 18, no. 4, pp. 845–897.

    Google Scholar 

  36. Mohebbi, G.H., Nabipour, I., Vazirizadeh, A., Vatanpour, H., Farrokhnia, M., Maryamabadi, A., and Bargahi, A., Acetylcholinesterase inhibitory activity of a neurosteroidal alkaloid from the upside-down jellyfish Cassiopea andromeda venom, Rev. Bras. Farmacogn., 2018, vol. 28, no. 5, pp. 568–574.

    Article  CAS  Google Scholar 

  37. Munín, J., Quezada, E., Cuiñas, A., Campos-Toimil, M., Uriarte, E., Santana, L., and Viña, D., Synthesis, biological evaluation and structure-activity relationships of new phthalazinedione derivatives with vasorelaxant activity, Eur. J. Med. Chem., 2014, vol. 82, pp. 407–417.

    Article  PubMed  CAS  Google Scholar 

  38. Naima, S, Muhammad, R.K., and Maria, S., Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L., BMC Complement. Altern. Med., 2012, vol. 12, p. 221. http://www.biomedcentral. com/1472-6882/12/221.

    Article  Google Scholar 

  39. Najafi, A., Amini Khoei, Z., Tajbakhsh, S., Asayesh, G., and Mohebbi, G.H., Evaluation of the activity of new species of jelly fish collected from Nayband bay in Bushehr against human pathogenic bacteria, J. Biol. Sci., 2016, vol. 4, pp. 35–42.

    Google Scholar 

  40. Nandagopalan, V., Johnson Gritto, M., and Doss, A., GC-MS analysis of bioactive components of the methanol extract of Hibiscus tiliaceus Linn., Asian J. Plant Sci., 2015, vol. 5, no. 3, pp. 6–10.

    CAS  Google Scholar 

  41. NCBI. National Center for Biotechnology Information, PubChem Database. CID=690104, https://pubchem.ncbi.nlm.nih.gov/compound/1-_4-nitrophenyl_ethylideneamino_thiourea, 2019. Accessed July 26, 2019.

  42. Netz, N. and Opatz, T., Marine indole alkaloids, Mar. Drugs, 2015, vol. 13, pp. 4814–4914. https://doi.org/10.3390/md13084814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ng, T.B., Cheung, R.C., Wong, J.H., Bekhit, A.A., and Bekhit, A.D., Antibacterial products of marine organisms, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 10, pp. 4145–4173.

    Article  CAS  PubMed  Google Scholar 

  44. Niknam, K., Ebrahimpour, A., Barmak, A., and Mohebbi, G.H., Synthesis of novel hydroxyspiro[indoline-3,90-xanthene]trione derivatives using solid acids as catalyst, Monatsh Chem., 2018, vol. 149, p. 73. https://doi.org/10.1007/s00706-017-2076–8

    Article  CAS  Google Scholar 

  45. Padmavathi, V., Reddy, G.S., Padmaja, A., Kondaiah, P., and Ali-Shazia, Synthesis, antimicrobial and cytotoxic activities of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles, Eur. J. Med. Chem., 2009, vol. 44, pp. 2106–2112.

    Article  CAS  PubMed  Google Scholar 

  46. Palanisamy, S.K., Rajendran, N.M., and Marino, A., Natural products diversity of marine ascidians (Tunicates; Ascidiacea) and successful drugs in clinical development, Nat. Prod. Bioprospect., 2017, vol. 7, no. 1, pp. 1–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Panche, A.N., Diwan, A.D., and Chandra, S.R., Flavonoids: an overview, J. Nutr. Sci., 2016, vol. 5. e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pattanayak, P., Sharma, R., and Sahoo, P.K., Synthesis and evaluation of 2-amino-5-sulfanyl-1,3,4-thiadiazoles as antidepressant, anxiolytic, and anticonvulsant agents, Med. Chem. Res., 2009, vol. 18, no. 5, pp. 351–361.

    Article  CAS  Google Scholar 

  49. Paul, V.J., Puglisi, M.P., and Ritson-Williams, R., Marine chemical ecology, Nat. Prod. Rep., 2008, vol. 25, pp. 662–695.

    Article  CAS  PubMed  Google Scholar 

  50. Roje-Busatto, R. and Ujevic, I., PSP toxins profile in ascidian Microcosmus vulgaris (Heller, 1877) after human poisoning in Croatia (Adriatic Sea), Toxicon, 2014, vol. 79, pp. 28–36.

    Article  CAS  PubMed  Google Scholar 

  51. Sahu, N. and Saxena, J., Total phenolic and total flavonoid content of Bougainvillea glabra Choisy and Calforina gold flower extracts, Int. J. Pharm. Tech., 2013, vol. 5, pp. 5581–5585.

    CAS  Google Scholar 

  52. Sarhadizadeh, N., Afkhami, M., and Ehsanpour, M., Evaluation of antibacterial, antifungal and cytotoxic agents of Ascidian Phallusia nigra (Savigny, 1816) from Persian Gulf, Eur. J. Exp. Biol., 2014, vol. 4, no. 1, pp. 250–253.

    Google Scholar 

  53. Schenone, S., Brullo, C., Bruno, O., Bondavalli, F., Ranise, A., Filippelli, W., Rinaldi, B., Capuano, A., and Falcone, G., New 1,3,4-thiadiazole derivatives endowed with analgesic and anti-inflammatory activities, Bioorg. Med. Chem., 2006, vol. 14, no. 6, pp. 1698–1705.

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt, E.W., Donia, M.S., McIntosh, J.A., Fricke, W.F., and Ravel, J., Origin and variation of tunicate secondary metabolites, J. Nat. Prod., 2012, vol. 75, no. 2, pp. 295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schmidt, E.W., Nelson, J.T., Rasko, D.A., Sudek, S., Eisen, J.A., Haygood, M.G., and Ravel, J., Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella J. Ravel, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 7315–7320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shannon, E. and Abu-Ghannam, N., Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications, Mar. Drugs, 2016, vol. 14, p. 81. https://doi.org/10.3390/md14040081

    Article  CAS  PubMed Central  Google Scholar 

  57. Shuman, E.K. and Malani, P.N., Infectious diseases mortality in the United States: ongoing investment needed for continued progress, JAMA, 2018, vol. 319, no. 12, pp. 1205–1206.

    Article  PubMed  Google Scholar 

  58. Steve, B., Levine, D.V.M., Grant, D., Myhre, D.V.M., Guy, L., Smith, D.V.M., James, G., and Burns, D.V.M., Effect of a nutritional supplement containing N,N-dimethylglycine (DMG) on the racing Standardbred, Equine Practice, 1982, vol. 4, pp. 17–20.

    Google Scholar 

  59. Suleria, H.A., Osborne, S., Masci, P., and Gobe, G., Marine-based nutraceuticals: an innovative trend in the food and supplement industries, Mar. Drugs, 2015, vol. 13, no. 10, pp. 6336–6351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tajbakhsh, S., Ilkhani, M., Rustaiyan, A., Larijani, K., Sartavi, K., Tahmasebi, R., and Asayesh, G., Antibacterial effect of the brown alga Cystoseira trinodis, J. Med. Plants Res., 2011, vol. 5, no. 18, pp. 4654–4657.

    Google Scholar 

  61. Takahashi, T., Sasaki, K., Somfai, T., Nagai, T., Manabe, N., and Edashige, K., N,N-Dimethylglycine decreases oxidative stress and improves in vitro development of bovine embryos, J. Reprod. Dev., 2016, vol. 62, no. 2, pp. 209–212.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tapas, A.R., Sakarkar, D.M., and Kakde, R.B., Flavonoids as nutraceuticals: a review, Trop. J. Pharm. Res., 2008, vol. 7, pp. 1089–1099.

    Article  Google Scholar 

  63. Tsuchiya, H. and Iinuma, M., Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua, Phytomedicine, 2000, vol. 7, no. 2, pp. 161–165.

    Article  CAS  PubMed  Google Scholar 

  64. Urban, S., Blunt, J.W., and Munro, M.H.G., Coproverdine, a novel, cytotoxic marine alkaloid from a New Zealand ascidian, J. Nat. Prod., 2002, vol. 65, no. 9, pp. 1371–1373.

    Article  CAS  PubMed  Google Scholar 

  65. Vanhauteghem, D., Janssens, G.P., Lauwaerts, A., Sys, S., Boyen, F., Kalmar, I.D., and Meyer, E., Glycine and its N-methylated analogues cause pH-dependent membrane damage to enterotoxigenic Escherichia coli, Amino Acids, 2012, vol. 43, no. 1, pp. 245–253.

    Article  CAS  PubMed  Google Scholar 

  66. Wei, M.X., Feng, L., Li, X.Q., Zhou, X.Z., and Shao, Z.H., Synthesis of new chiral 2,5-disubstituted 1,3,4-thiadiazoles possessing gamma-butenolide moiety and preliminary evaluation of in vitro anticancer activity, Eur. J. Med. Chem., 2009, vol. 44, pp. 3340–3344.

    Article  CAS  PubMed  Google Scholar 

  67. WHO (World Health Organization), Antimicrobial resistance: global report on surveillance. 2014. https://apps. who.int/iris/bitstream/handle/10665/112642/9789241564748_ eng.pdf?sequence=1.

  68. WHS (World Health Statistics), Monitoring health for the SDGs, sustainable development goals, Geneva: World Health Organization, 2018. Licence CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. http://apps.who.int/iris. https://apps.who.int/iris/bitstream/handle/10665/272596/9789241565585-eng.pdf.

  69. Xia, R.R., Effectiveness of nutritional supplements for reducing symptoms in autism-spectrum disorder: a case report, J. Altern. Complement., 2011, vol. 17, no. 3, pp. 271–274.

    Article  Google Scholar 

  70. Zarrabi, M., Asghari, B., Maryamabadi, A., Mohebbi, G.H., and Rashvand, S., Phytochemical properties and inhibitory and antioxidant effects of the decoction, infusion and hydro-alcoholic extract of Nepeta racemosa on α-amylase and α-glucosidase, Iran. South Med. J., 2019, vol. 22, pp. 90–105.

    Article  Google Scholar 

  71. Zorofchian, M.S., Nikzad, S., Abdul Kadir, H., Abubakar, S., and Zandi, K., Potential antiviral agents from marine fungi: an overview, Mar. Drugs, 2015, vol. 13, pp. 4520–4538.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Mohebbi.

Ethics declarations

Conflict of interests. The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Statement on the welfare of animals. The project was permitted by the Medical Ethics Committee of Bushehr University of Medical Sciences and Health Services, Bushehr, Iran. The experiments were based on the National Ethical Guidelines for Animal Research in Iran (2005), under a project license, which was approved by the Animal Care and Use Committee of Bushehr University of Medical Sciences, Iran, according to the Protocol: D/P/858.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asayesh, G., Mohebbi, G.H., Nabipour, I. et al. Secondary Metabolites from the Marine Tunicate “Phallusia nigra” and Some Biological Activities. Biol Bull Russ Acad Sci 48, 263–273 (2021). https://doi.org/10.1134/S1062359021030031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021030031

Keywords:

Navigation