Skip to main content
Log in

Extracellular Phytoplankton Production and Its Importance for Heterotrophic Activity of Bacteria

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The ecological role of the extracellular production of phytoplankton is discussed. The experiments based on a radiocarbon method combined with differential filtration of water samples have shown that approximately 20% of the phytoplankton production is transformed into bacterial production in marine and fresh waters of different trophic status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aizaki, M., Otsuki, A., Fukushima, T., Hosomi, M., and Muraoka, K., Application of Carlson’s trophic state index and other parameters, Verh. Int. Verein. Limnol., 1981, vol. 21, pp. 675–681.

    CAS  Google Scholar 

  2. Anderson, G.C. and Zeutschel, R.P., Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the Northeast Pacific Ocean, Limnol. Oceanogr., 1970, vol. 15, no. 3, pp. 402–407.

    Article  Google Scholar 

  3. Azam, F. and Holm-Hansen, O., Use of tritiated substrates in the study of heterotrophy in seawater, Mar. Biol. (Berlin), 1973, vol. 23, no. 3, pp. 191–196.

    Article  CAS  Google Scholar 

  4. Baines, S.B. and Pace, M.L., The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems, Limnol. Oceanogr., 1991, vol. 36, pp. 1078–1090.

    Article  Google Scholar 

  5. Bird, D.F. and Kalff, J., Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters, Can. J. Fish. Aquat. Sci., 1984, vol. 41, no. 7, pp. 1015–1023.

    Article  Google Scholar 

  6. Boulion, V.V., Pervichnaya produktsiya planktona vnutrennikh vodoemov (Primary Production of Plankton in Inland Water Bodies), Leningrad: Nauka, 1983.

  7. Boulion, V.V., Zakonomernosti pervichnoi produktsii v limnicheskikh ekosistemakh (Patterns of Primary Production in Limnetic Ecosystems), St. Petersburg: Nauka, 1994.

  8. Boulion, V.V. and Pavel’eva, E.B., The Relationship between bacterial abundance and concentration of planktonic chlorophyll in freshwater lakes, Microbiology (Moscow), 1998, vol. 67, no. 2, pp. 215–219.

    Google Scholar 

  9. Cole, J.J., Likens, G.E., and Strayer, D.L., Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria, Limnol. Oceanogr., 1982, vol. 27, no. 6, pp. 1080–1090.

    Article  CAS  Google Scholar 

  10. Currie, D.J., Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus, Limnol. Oceanogr., 1990, vol. 35, no. 7, pp. 1437–1455.

    Article  Google Scholar 

  11. Currie, D.J. and Kalff, J., A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus, Limnol. Oceanogr., 1984, vol. 29, no. 2, pp. 298–310.

    Article  CAS  Google Scholar 

  12. Derenbach, J.B., Le, P.J., and Willams, P.J., Autotrophic and bacterial production: fractionation of planktonic population by differential filtration of samples from English Channel, Mar. Biol. (Berlin), 1974, vol. 25, no. 4, pp. 263–269.

    Article  Google Scholar 

  13. Descy, J.P., Leporcq, B., Viroux, L., Francois, C., and Servais, P., Phytoplankton production, exudation and bacterial reassimilation in the River Meuse (Belgium), J. Plankton Res., 2002, vol. 24, no. 3, pp. 161–166.

    Article  Google Scholar 

  14. Eppley, R.W. and Sloan, P.R., Carbon balance experiments with marine phytoplankton, J. Fish. Res. Board Can., 1965, vol. 22, no. 4, pp. 1083–1097.

    Article  CAS  Google Scholar 

  15. Fogg, G.E., The extracellular products of algae, Ann Rev., 1966, vol. 4, pp. 195–212.

    CAS  Google Scholar 

  16. Fouilland, E., Tolosa, I., Bonnet, D., Bouvier, C., Bouvier, T., Bouvy, M., Got, P., Le Floch, E., Mostajir, B., Roques, C., Sempere, R., Sime-Ngando, T., and Vidussi, F., Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters, FEMS Microbiol. Ecol., 2014, vol. 87, pp. 757–769.

    Article  CAS  PubMed  Google Scholar 

  17. Fursenko, M.V. and Kuz’mitskaya, N.K., Microbiological research, Tr. Zool. Inst. Akad. Nauk SSSR, 1975, vol. 57, pp. 53–76.

    Google Scholar 

  18. Godlewska-Lipowa, W.A., Bacteria as indicator of the degree of eutrophication and degradation of lakes, Pol. Arch. Hydrobiol., 1976, vol. 23, no. 3, pp. 341–356.

    Google Scholar 

  19. Gomes, H., Pant, A., Goes, J.I., and Parulekar, A.H., Heterotrophic utilization of extracellular products of phytoplankton in a tropical estuary, J. Plankton Res., 1991, vol. 13, no. 3, pp. 487–498.

    Article  Google Scholar 

  20. Guseva, K.A., Blooming” of water, its causes, forecast and measures to combat it, Tr. Vses. Gidrobiol. O-va, 1952, vol. 4, pp. 3–92.

    Google Scholar 

  21. Harrison, W.G., Azam, F., Renger, E., and Eppley, R.W., Some experiments of phosphate assimilation by costal marine plankton, Mar. Biol. (Berlin), 1977, vol. 40, no. 1, pp. 9–18.

    Article  CAS  Google Scholar 

  22. Hellebust, J.A., Excretion of some organic compounds by marine phytoplankton, Limnol. Oceanogr., 1965, vol. 10, no. 2, pp. 192–206.

    Article  Google Scholar 

  23. Hobbie, J.E. and Grawford, C.C., Respiration correction for bacterial uptake of dissolved organic compounds in natural waters, Limnol. Oceanogr., 1969, vol. 14, no. 4, pp. 528–532.

    Article  CAS  Google Scholar 

  24. Iturriaga, R. and Hoppe, H.G., Observations of heterotrophic activity on photoassimilation organic matter, Mar. Biol. (Berlin), 1977, vol. 40, no. 2, pp. 101–108.

    Article  Google Scholar 

  25. Kuz’micheva, V.I., Optimal conditions for the development of phytoplankton in fishery ponds in Obshchie osnovy izucheniya vodnykh ekosistem (General Foundations of the Study of Aquatic Ecosystems), Leningrad: Nauka, 1979, pp. 236–246.

    Google Scholar 

  26. Kuznetsov, S.I., Rol’ mikroorganizmov v krugovorote veshchestv v ozerakh (The Role of Microorganisms in the Turnover of Substances in Lakes), Moscow: Akad. Nauk SSSR, 1952.

  27. Kuznetsov, S.I., Mikroflora ozer i ee geokhimicheskaya deyatel’nost’ (Microflora of Lakes and Its Geochemical Activity), Leningrad: Nauka, 1970.

  28. Larson, U. and Hagström, A., Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar. Biol. (Berlin), 1979, vol. 52, no. 3, pp. 199–206.

    Article  Google Scholar 

  29. Larson, U. and Hagström, A., Fractionated phytoplankton primary production, exudates release and bacterial production in a Baltic eutrophication gradient, Mar. Ecol., 1982, vol. 67, no. 1, pp. 57–70.

    Google Scholar 

  30. Lasker, R. and Holmes, R.W., Variability in retention of marine phytoplankton by membrane filters, Nature, 1957, vol. 180, no. 4597, pp. 1295–1296.

    Article  Google Scholar 

  31. Marra, J. and Barber, R.T., Phytoplankton and heterotrophic respiration in the surface layer of the ocean, Geophys. Rev. Lett., 2004, vol. 31, no. 9, pp. 1–12.

    Article  Google Scholar 

  32. Morana, C., Sarmento, H., Descy, J.P., Gasol, J.M., Borges, A.V., Bouillon, S., and Darchambeau, F., Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic prokaryotes in large tropical lakes, Limnol. Oceanogr., 2014, vol. 59, no. 4, pp. 1364–1375.

    Article  CAS  Google Scholar 

  33. Nalewajko, C., Photosynthesis and excretion in various plankton algae, Limnol. Oceanogr., 1966, vol. 11, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  34. Overbeck, J., Distribution pattern of phytoplankton and bacteria, microbial decomposition of organic matter and bacterial production in eutrophic, stratified lakes, in Productivity Problems of Freshwater, Warszawa: Pol. Sci. Publ., 1972, pp. 227–237.

    Google Scholar 

  35. Potaenko, Yu.S., Abundance, biomass, and production of bacterioplankton, in Eksperimental’nye i polevye issledovaniya biologicheskikh osnov produktivnosti ozer (Experimental and Field Studies of the Biological Bases of Lake Productivity), Leningrad: Zool. Inst. Akad. Nauk SSSR, 1979, pp. 80–102.

  36. Rai, H., Chlorophyll pigments in the Central Amazon lake ecosystems, Verh. Int. Verein. Limnol., 1978, vol. 20, pt. 2, pp. 1192–1197.

    Google Scholar 

  37. Robarts, R.D. and Sephton, L.M., Phytoplankton extracellular dissolved organic carbon production in a hypertrophic African lake, Hydrobiologia, 1989, vol. 182, pp. 131–148.

    Article  Google Scholar 

  38. Romanenko, V.I., Primary production and bacterial processes of organic matter destruction in the Rybinsk Reservoir, in Produktsionno-biologicheskie issledovaniya ekosistem presnykh vod (Production and Biological Research of Freshwater Ecosystems), Minsk: Beloruss. Gos. Univ., 1973, pp. 110–125.

  39. Samuel, S., Shah, N.M., and Fogg, G.E., Liberation of extracellular products of photosynthesis by tropical phytoplankton, J. Mar. Biol. Assoc. U.K., 1971, vol. 52, no. 4, pp. 793–798.

    Article  Google Scholar 

  40. Sapozhnikov, V.V. and Sokolova, Yu.I., Determination of gross nitrogen, in Metody gidrokhimicheskikh issledovanii okeana (Methods of Hydrochemical Studies of the Ocean), Moscow: Nauka, 1978, pp. 208–215.

  41. Sondergaard, M., Riemann, B., and Jorgensen, N.O.G., Extracellular organic carbon (EOC) released by phytoplankton and bacterial production, Oikos, 1985, vol. 45, no. 3, pp. 323–332.

    Article  Google Scholar 

  42. Sorokin, Yu.I., The role of dark bacterial assimilation of carbon dioxide in the trophism of water bodies, Mikrobiologiya, 1964, vol. 33, no. 5, pp. 880–886.

    Google Scholar 

  43. Sorokin, Yu.I., Quantitative assessment of the role of bacterioplankton in the biological productivity of tropical waters of the Pacific Ocean, in Funktsionirovanie pelagicheskikh soobshchestv tropicheskikh regionov okeana (Functioning of Pelagic Communities in Tropical Ocean Regions), Moscow: Nauka, 1971, pp. 92–122.

  44. Steemann Nielsen, E., The use of radioactive carbon (C14) for measuring organic production in the sea, J. Cons., 1952, vol. 18, nos. 1–3, pp. 117–140.

    Article  Google Scholar 

  45. Thomas, J.F., Release of dissolved organic matter from natural populations of marine phytoplankton, Mar. Biol. (Berlin), 1971, vol. 11, no. 4, pp. 311–323.

    Article  Google Scholar 

  46. Waite, D.T. and Duthie, H.C., Heterotrophic utilization of phytoplankton metabolites of Sunfish Lake, Ontario, Verh. Int. Verein. Limnol., 1975, vol. 19, pt. 1, pp. 672–680.

    Google Scholar 

  47. Watt, W.D., Release of dissolved organic matter from the cells of phytoplankton population, Proc. Roy. Soc. B, 1966, vol. 164, no. 997, pp. 521–551.

    CAS  Google Scholar 

  48. Weibe, W.J. and Smith, D.F., Direct measurement dissolved organic carbon released by phytoplankton and incorporation by microheterotrophs, Mar. Biol. (Berlin), 1977, vol. 42, no. 3, pp. 213–223.

    Article  Google Scholar 

  49. Wolter, K., Bacterial incorporation of organic substances released by natural phytoplankton population, Mar. Ecol. Progr. Ser., 1982, vol. 17, no. 3, pp. 287–295.

    Article  Google Scholar 

  50. Wrigt, R.T. and Hobbie, J.R., Use of glucose and acetate by bacteria and algae in aquatic ecosystems, Ecology, 1966, vol. 47, no. 3, pp. 447–454.

    Article  Google Scholar 

Download references

Funding

This work was supported under a State Assignment (project no. AAAA-A19-119020690091-0) “Exploration of the Biological Diversity and Mechanisms of Influence of Anthropogenic and Natural Factors on Structure Functional Organization of Ecosystems of Continental Water Reservoirs: Systematization of Biodiversity in Salt Lakes and Low-Salinity Internal Seas in a Zone of Critical Salinity, Study of the Roles of Saltwater Species in Ecosystems.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Boulion.

Ethics declarations

The author declares that he has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by A. Aver’yanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulion, V.V. Extracellular Phytoplankton Production and Its Importance for Heterotrophic Activity of Bacteria. Biol Bull Russ Acad Sci 48, 358–366 (2021). https://doi.org/10.1134/S1062359021030043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021030043

Navigation