Skip to main content
Log in

Mathematical Modeling of Population Dynamics Based on Recurrent Equations: Results and Prospects. Part II

  • THEORETICAL AND EVOLUTIONARY BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The second part of this article focuses on subjects devoted to mathematical modeling of the evolution of limited populations and migration affecting the dynamics of coupled populations and the patterns of their spatial distribution. The purpose of this article is to present developed approaches and mathematical discrete-time models to study the emergence of multistability, synchronization, and clustering in population systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Astakhov, V.V., Shabunin, A.V., and Stal’makhov, P.A., Bifurcation mechanisms of destruction of antiphase synchronization of chaos in coupled systems with discrete time, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2006, vol. 14, no. 6, pp. 100–111.

    Google Scholar 

  2. Axenovich, T.I., Zorkoltseva, I.V., Akberdin, I.R., Beketov, S.V., Kashtanov, S.N., Zakharov, I.A., and Borodin, P.M., Inheritance of litter size at birth in farmed arctic foxes (Alopex lagopus, Canidae, Carnivora), Heredity, 2007, vol. 98, no. 2, pp. 99–105.

    Article  CAS  PubMed  Google Scholar 

  3. Banerjee, T., Dutta, P.S., Zakharova, A., and Scholl, E., Chimera patterns induced by distance-dependent power-law coupling in ecological networks, Phys. Rev. E, 2016, vol. 94, no. 032206.

  4. Barbosa, P. and Schultz, J.C., Insect Outbreaks, London: Academic, 1987.

    Google Scholar 

  5. Barton, N., Briggs, D., Eisen, J., Goldstein, D., and Patel, N., Evolution, New York: Cold Spring Harbor Lab. Press, 2007.

    Google Scholar 

  6. Bertram, J. and Masel, J., Density-dependent selection and the limits of relative fitness, Theor. Popul. Biol., 2019, vol. 129, pp. 81–92.

    Article  PubMed  Google Scholar 

  7. Bezruchko, B.P., Prokhorov, M.D., and Seleznev, E.P., Oscillation modes, multistability, and basins of attraction of attractors of symmetrically coupled systems with period doubling, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2002, vol. 10, no. 4, pp. 47–68.

    Google Scholar 

  8. Birch, L.C., Selection in Drosophila pseudoobscura in relation to crowding, Evolution, 1955, vol. 9, no. 4, pp. 389–399.

    Article  Google Scholar 

  9. Boonstra, R. and Boag, P.T., A test of the chitty hypothesis: inheritance of life-history traits in meadow voles Microtus pennsylvanicus, Evolution, 1987, vol. 41, pp. 929–947.

    Article  PubMed  Google Scholar 

  10. Burton, O. and Travis, J., Landscape structure and boundary effects determine the fate of mutations occurring during range expansions, Heredity, 2008, vol. 101, pp. 329–340.

    Article  CAS  PubMed  Google Scholar 

  11. Carroll, S.P., Hendry, A.P., Reznick, D.N., and Fox, C.W., Evolution on ecological time-scales, Func. Ecol., 2007, vol. 21, no. 3, pp. 387–393.

    Article  Google Scholar 

  12. Charlesworth, B., Selection in density-regulated populations, Ecology, 1971, vol. 52, no. 3, pp. 469–474.

    Article  Google Scholar 

  13. Chetverikov, S.S., On some aspects of the evolutionary process from the standpoint of modern genetics, Zh. Eksp. Biol, Ser. A., 1926, vol. 2, no. 1, pp. 3–54.

    Google Scholar 

  14. Chitty, D., Mortality among voles (Microtus agrestis) at Lake Vyrnwy, Montgomeryshire in 1936–9, Philos. Trans. R. Soc., B, 1952, vol. 236 (638), pp. 505–552.

  15. Chitty, D., Population processes in the vole and their relevance to general theory, Can. J. Zool., 1960, vol. 38, pp. 99–113.

    Article  Google Scholar 

  16. Comins, H.N., Hassell, M.P., and May, R.M., The spatial dynamics of host–parasitoid systems, Okeanologiya, 1992, vol. 61, pp. 735–748.

    Google Scholar 

  17. Darwin, C., On the Origin of Species by Means of Natural Selection, London: Murray, 1859.

    Google Scholar 

  18. Ellner, S., Environmental fluctuations and the maintenance of genetic diversity in age or stage-structured populations, Bull. Math. Biol., 1996, vol. 58, no. 1, pp. 103–127.

    Article  CAS  PubMed  Google Scholar 

  19. Endler, J.A., Natural selection on color patterns in Poecilia reticulata, Evolution, 1980, vol. 34, no. 1, pp. 76–91.

    Article  PubMed  Google Scholar 

  20. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon Press, 1930.

    Book  Google Scholar 

  21. Frisman, E.Ya., Pervichnaya geneticheskaya divergentsiya (teoreticheskii analiz i modelirovanie) (Primary Genetic Divergence (Theoretical Analysis and Modeling)), Vladivostok: DVNTs AN SSSR, 1986.

  22. Frisman, E.Ya., Changes in the population dynamics pattern: mechanisms of transition to chaos, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 1995, no. 4, pp. 97–106.

  23. Frisman, E.Ya. and Skaletskaya, E.I., Strange attractors in the simplest models of the dynamics of the size of biological populations, Obozr. Prikl. Prom. Matem., 1994, vol. 1, no. 6, pp. 988–1008.

    Google Scholar 

  24. Frisman, E.Ya. and Zhdanova, O.L., Evolutionary transition to complex population dynamic patterns in a two-age population, Russ. J. Genet., 2009, vol. 45, no. 9, pp. 1124–1133.

    Article  CAS  Google Scholar 

  25. Frisman, E.Ya., Tuzinkevich, A.V., and Gromova, N.P., “Spotting” of spatial structures of a population and the origin of species as a consequence of dynamic instability, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 1996, no. 4, pp. 120–129.

  26. Frisman, E.Ya., Neverova, G.P., Revutskaya, O.L., and Kulakov, M.P., Modes of the dynamics of a two-age population model, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2010, vol. 18, no. 2, pp. 111–130.

    Google Scholar 

  27. Frisman, E.Ya., Neverova, G.P., and Revutskaya, O.L., Complex dynamics of the population with a simple age structure, Ecol. Model., 2011, vol. 222, pp. 1943–1950.

    Article  Google Scholar 

  28. Frisman, E.Ya., Zhdanova, O.L., Kulakov, M.P., Neverova, G.P., and Revutskaya, O.L., Mathematical modeling of population dynamics based on recurrent equations: results and prospects. Part I, Biol. Bull. (Moscow), 2021, no. 1, pp. 1–15.

  29. Gaines, M.S., Leroy, R., McClenaghan, Jr., and Rose, R.K., Temporal patterns of allozymic variation in fluctuating populations of Microtus ochrogaster, Evolution, 1978, vol. 32, no. 4, pp. 723–739.

    Article  CAS  PubMed  Google Scholar 

  30. Gauze, G.F., Study of the struggle for existence in mixed populations, Zool. Zh., 1935, vol. 14, no. 2, pp. 243–270.

    Google Scholar 

  31. Gauze, G.F., Ecology and some problems of the origin of species, in Ekologiya i evolyutsionnaya teoriya (Ecology and Evolutionary Theory), Leningrad: Nauka, 1984, pp. 5–105.

  32. Gottlieb, L.D., Genetic stability in a peripheral isolate of Stephanomeria exigua ssp. coronaria that fluctuates in population size, Genetics, 1974, vol. 76, no. 3, pp. 551–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Graham, J., Reproductive effect and r- and k-selection in two species of Lacuna (Gastropods: Prosobranchia), Mar. Biol. (Berlin), 1977, vol. 40, no. 3, pp. 217–224.

    Article  Google Scholar 

  34. Gyllenberg, M. and Hanski, I., Single-species metapopulation dynamics: a structured model, Theor. Popul. Biol., 1992, vol. 42, no. 1, pp. 35–61.

    Article  Google Scholar 

  35. Gyllenberg, M., Söderbacka, G., and Ericson, S., Does migration stabilize local population dynamics? Analysis of a discrete matapopulation model, Math. Biosci., 1993, vol. 118, pp. 25–49.

    Article  CAS  PubMed  Google Scholar 

  36. Haldane, J.B.S., The Causes of Evolution, London: Longman Green, 1932.

    Google Scholar 

  37. Hanski, I.A. and Gaggiotti, O.E., Ecology, Genetics and Evolution of Metapopulations, San Diego: Elsevier, 2004.

    Google Scholar 

  38. Hanski, I. and Gyllenberg, M., Two general metapopulation models and the core–satellite species hypothesis, Am. Nat., 1993, vol. 142, no. 1, pp. 17–41.

    Article  Google Scholar 

  39. Huang, T. and Zhang, H., Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system, Chaos, Solit., Fract, 2016, vol. 91, pp. 92–107.

    Article  Google Scholar 

  40. Huang, T., Zhang, H., Hu, Z., Pan, G., Ma, S., Zhang, X., and Gao, Z., Predator–prey pattern formation driven by population diffusion based on Moore neighborhood structure, Adv. Diff. Equat., 2019, vol. 2019, no. 1, p. 399.

    Article  Google Scholar 

  41. Isaev, A.S., Pal’nikova, E.N., Sukhovol’skii, V.G., and Tarasova, O.V., Dinamika chislennosti lesnykh nasekomykh-fillofagov: modeli i prognozy (Dynamics of the Abundance of Forest Phyllophagous Insects: Models and Forecasts), Moscow: KMK, 2015.

  42. Kingman, J.F.C., A mathematical problem in population genetics, Proc. Can. Phill. Soc., 1961, vol. 57, pp. 574–582.

    Article  Google Scholar 

  43. Kolobov, A.N. and Frisman, E.Y., Individual-based model of spatio-temporal dynamics of mixed forest stands, Ecol. Compl., 2016, vol. 27, pp. 29–39.

    Article  Google Scholar 

  44. Kulakov, M.P., On one model of migration-related populations with long-range interactions, Reg. Probl., 2018, vol. 21, no. 2, pp. 52–60.

    Google Scholar 

  45. Kulakov, M.P. and Frisman, E.Ya., Synchronization of 2‑cycles in a system of symmetrically connected populations in which the stock-recruitment is described by the Ricker function, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2010, vol. 18, no. 6, pp. 25–41.

    Google Scholar 

  46. Kulakov, M.P. and Frisman, E.Ya., The use of the clustering effect in systems of coupled mappings to describe the dynamics of metapopulations, Matem. Biol. Bioinform., 2015, vol. 10, no. 1, pp. 220–233.

    Article  Google Scholar 

  47. Kulakov, M.P. and Frisman, E.Ya., Clustering and chimeras in the spatial dynamics of populations with age structure in a ring area, Reg. Probl., 2017, vol. 19, no. 4, pp. 5–11.

    Google Scholar 

  48. Kulakov, M.P. and Frisman, E.Ya., Clustering and chimeras in the model of spatio-temporal dynamics of populations with age structure, Nelineinaya Din., 2018, vol. 14, no. 1, pp. 13–31.

    Article  Google Scholar 

  49. Kulakov, M.P. and Frisman, E.Ya., Modeling of spatiotemporal dynamics of a population with an age structure and long-range interactions: synchronization and clustering, Matem. Biol. Bioinform., 2019, vol. 14, no. 1, pp. 1–18.

    Article  Google Scholar 

  50. Kulakov, M.P. and Frisman, E.Ya., Approaches to the study of the multistability of the spatiotemporal dynamics of a two-age population, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2020, vol. 28, no. 6, pp. 653–678.

    Google Scholar 

  51. Kulakov, M.P., Aksenovich, T.I., and Frisman, E.Ya., Approaches to the description of the spatial dynamics of migration-related populations: analysis of cycle synchronization, Reg. Probl., 2013, vol. 16, no. 1, pp. 5–15.

    Google Scholar 

  52. Kulakov, M.P., Neverova, G.P., and Frisman, E.Ya., Multistability in models of dynamics of migration-related populations with age structure, Nelineinaya Din., 2014, vol. 10, no. 4, pp. 407–425.

    Article  Google Scholar 

  53. Kuznetsov, A.P. and Kuznetsov, S.P., Critical dynamics of lattices of coupled mappings at the threshold of chaos, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1991, vol. 34, nos. 10–12, pp. 1079–1115.

    Google Scholar 

  54. Liang, D., Wu, J., and Zhang, F., Modelling population growth with delayed nonlocal reaction in 2-dimensions, Math. Biosci. Eng., 2005, vol. 2, no. 1, pp. 111–132.

    Article  PubMed  Google Scholar 

  55. Long, Th. and Long, G., The effects of r- and K-selection on components of variance for two quantitative traits, Genetics, 1974, vol. 76, no. 3, pp. 567–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. MacNaughton, S.J., R- and K-selection in Tipha, Am. Nat., 1975, vol. 109, no. 961, pp. 251–261.

    Article  Google Scholar 

  57. Mallet, J., The struggle for existence. How the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution and speciation, Evol. Ecol. Res., 2012, vol. 14, pp. 627–665.

    Google Scholar 

  58. Neverova, G.P., Zhdanova, O.L., and Frisman, E.Ya., The emergence of complex dynamics during the evolution of a structured limited population, Russ. J. Genet., 2020, vol. 56, no. 6, pp. 747–757.

    Article  CAS  Google Scholar 

  59. Oppo, G.-L. and Kapral, R., Discrete models for the formation and evolution of spatial structure in dissipative systems, Phys. Rev. A, 1986, vol. 33, no. 6, p. 4219.

    Article  CAS  Google Scholar 

  60. Pelletier, F., Garant, D., and Hendry, A.P., Eco-evolutionary dynamics, Phil. Trans. R. Soc., B, 2009, vol. 364, pp. 1483–1489.

    Article  CAS  Google Scholar 

  61. Pimentel, D., Population regulation and genetic feedback, Science, 1968, vol. 159, pp. 1432–1437.

    Article  CAS  PubMed  Google Scholar 

  62. Pommerening, A. and Grabarnik, P., Individual-Based Methods in Forest Ecology and Management, Cham: Springer, 2019.

    Book  Google Scholar 

  63. Ratner, V.A., Matematicheskaya populyatsionnaya genetika (Mathematical Population Genetics), Novosibirsk: Nauka, 1977.

  64. Reznick, D.N. and Bryga, H., Life-history evolution in guppies (Poecilia reticulata). 1. Phenotypic and genetic changes in an introduction experiment, Evolution, 1987, vol. 41, no. 6, pp. 1370–1385.

    PubMed  Google Scholar 

  65. Reznick, D.A., Bryga, H., and Endler, J.A., Experimentally induced life-history evolution in a natural population, Nature, 1990, vol. 346, no. 6282, pp. 357–359.

    Article  Google Scholar 

  66. Rybalova, E., Anishchenko, V.S., Strelkova, G.I., and Zakharova, A., Solitary states and solitary state chimera in neural networks, Chaos, 2019, vol. 29, no. 071106.

  67. Shepelev, I.A. and Vadivasova, T.E., Solitary states in a 2D lattice of bistable elements with global and close to global interactions, Nelineinaya Din., 2017, vol. 13, no. 3, pp. 317–329.

    Article  Google Scholar 

  68. Sinervo, B., Svensson, E., and Comendant, T., Density cycles and an offspring quantity and quality game driven by natural selection, Nature, 2000, vol. 406, pp. 985–988.

    Article  CAS  PubMed  Google Scholar 

  69. Stearns, S.C., The genetic basis of differences in life-history traits among six populations of mosquitofish (Gambusia affinis) that shared ancestors in 1905, Evolution, 1983, vol. 37, no. 3, pp. 618–627.

    PubMed  Google Scholar 

  70. Stearns, S.C., The Evolution of Life Histories, Oxford: Oxford Univ. Press, 1992.

    Google Scholar 

  71. Tuzinkevich, A.V. and Frisman, E.Ya., Dissipative structures and patchiness in spatial distribution of plants, Ecol. Model., 1990, vol. 52, pp. 207–223.

    Article  Google Scholar 

  72. Vasconcelos, D.B., Viana, R.L., Lopes, S.R., Batista, A.M., and Pinto, S.E., Spatial correlations and synchronization in coupled map lattices with long-range interactions, Phys. A (Amsterdam), 2004, vol. 343, pp. 201–218.

    Article  Google Scholar 

  73. Viana, R.L., Batista, A.M., Batista, C.A.S., and Iarosz, K.C., Lyapunov spectrum of chaotic maps with a long-range coupling mediated by a diffusing substance, Nonlin. Dyn., 2017, vol. 87, no. 3, pp. 1589–1601.

    Article  Google Scholar 

  74. William, C.K. and Moore, R.J., Phenotypic adaptation and natural selection in the wild rabbit, Oryctolagus cuniculus, in Australia, Okeanologiya, 1989, pp. 495–507.

    Google Scholar 

  75. Wright, S., The genetical theory of natural selection: a review, J. Hered., 1930, vol. 21, pp. 340–356.

    Article  Google Scholar 

  76. Yamamichi, M. and Ellner, S.P., Antagonistic coevolution between quantitative and Mendelian traits, Proc. R. Soc. London, Ser. B, 2016, vol. 283. 20152926.

    Google Scholar 

  77. Yamamichi, M. and Hoso, M., Roles of maternal effects in maintaining genetic variation: maternal storage effect, Evolution, 2017, vol. 71, no. 2, pp. 449–457.

    Article  PubMed  Google Scholar 

  78. Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F., and Hairston, N.G., Jr., Rapid evolution drives ecological dynamics in a predator–prey system, Nature, 2003, vol. 424, pp. 303–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was conducted within the framework of State Assignments of the Institute for Complex Analysis of Regional Problems, Far East Branch, Russian Academy of Sciences, and the Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences, and was supported by the Russian Foundation for Basic Research (project no. 19-14-50326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Neverova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frisman, E.Y., Zhdanova, O.L., Kulakov, M.P. et al. Mathematical Modeling of Population Dynamics Based on Recurrent Equations: Results and Prospects. Part II. Biol Bull Russ Acad Sci 48, 239–250 (2021). https://doi.org/10.1134/S1062359021030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021030055

Navigation