Skip to main content
Log in

Place cells and geometry lead to a flexible grid pattern

  • ORIGINAL ARTICLE
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Place cells and grid cells are important neurons involved in spatial navigation in the mammalian brain. Grid cells are believed to play an important role in forming a cognitive map of the environment. Experimental observations in recent years showed that the grid pattern is not invariant but is influenced by the shape of the spatial environment. However, the cause of this deformation remains elusive. Here, we focused on the functional interactions between place cells and grid cells, utilizing the information of location relationships between the firing fields of place cells to optimize the previous grid cell feedforward generation model and expand its application to more complex environmental scenarios. Not only was the regular equilateral triangle periodic firing field structure of the grid cells reproduced, but the expected results were consistent with the experiment for the environment with various complex boundary shapes and environmental deformation. Even in the field of three-dimensional spatial grid patterns, forward-looking predictions have been made. This provides a possible model explanation for how the coupling of grid cells and place cells adapt to the diversity of the external environment to deepen our understanding of the neural basis for constructing cognitive maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Action Editor: Susanne Schreiber

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, W. Place cells and geometry lead to a flexible grid pattern. J Comput Neurosci 49, 441–452 (2021). https://doi.org/10.1007/s10827-021-00794-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-021-00794-5

Keywords

Navigation