Skip to main content
Log in

Cellular communication network factor 3 in cartilage development and maintenance

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akashi S, Nishida T, El-Seoudi A, Takigawa M, Iida S, Kubota S (2018) Metabolic regulation of the CCN family genes by glycolysis in chondrocytes. J Cell Commun Signal 12:245–252

    PubMed  Google Scholar 

  • Akashi S, Nishida T, Mizukawa T, Kawata K, Takigawa M, Iida S, Kubota S (2020) Regulation of cellular communication factor 2 (CCN2) in breast cancer cells via the cell-type dependent interplay between CCN2 and glycolysis. J Oral Biosci 62:280–288

  • Barreto SC, Ray A, Edgar PA (2016) Biological characteristics of CCN proteins in tumor development. J BUON 21:1359–1367

    PubMed  Google Scholar 

  • Benini S, Perbal B, Zambelli D, Colombo MP, Manara MC, Serra M, Parenza M, Martinez V, Picci P, Scotlandi K (2005) In Ewing’s sarcoma CCN3 (NOV) inhibits proliferation while promoting migration and invasion of the same cell type. Oncogene 24:4349–4361

    CAS  PubMed  Google Scholar 

  • Bleau AM, Planque N, Perbal B (2005) CCN proteins and cancer: two to tango. Front Biosci 10:998–1009

    CAS  PubMed  Google Scholar 

  • Bleau AM, Planque N, Lazar N, Zambelli D, Ori A, Quan T, Fisher G, Scotlandi K, Perbal B (2007) Antiproliferative activity of CCN3: involvement of the C-terminal module and post-translational regulation. J Cell Biochem 101:1475–1491

    CAS  PubMed  Google Scholar 

  • Bork P (1993) The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 327:125–130

    CAS  PubMed  Google Scholar 

  • Bradham DM, Igarashi A, Potter RL, Grotendorst GR (1991) Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114:1285–1294

    CAS  PubMed  Google Scholar 

  • Brigstock DR (2003) The CCN family: a new stimulus package. J Endocrinol 178:169–175

    CAS  PubMed  Google Scholar 

  • Canalis E (2007) Nephroblastoma overexpressed (Nov) is a novel bone morphogenetic protein antagonist. Ann N Y Acad Sci 1116:50–58

    CAS  PubMed  Google Scholar 

  • Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783

    CAS  PubMed  Google Scholar 

  • Chen PC, Tai HC, Lin TH, Wang SW, Lin CY, Chao CC, Yu HJ, Tsai YC, Lai YW, Lin CW, Tang CH (2017) CCN3 promotes epithelial-mesenchymal transition in prostate cancer via FAK/Akt/HIF-1α-induced twist expression. Oncotarget 8:74506–74518

    PubMed  PubMed Central  Google Scholar 

  • Chen PC, Liu JF, Fong YC, Huang YL, Chao CC, Tang CH (2019) CCN3 facilitates Runx2 and osterix expression by inhibiting miR-608 through PI3K/Akt signaling in osteoblasts. Int J Mol Sci 20:3300

    CAS  PubMed Central  Google Scholar 

  • Cheng TY, Wu MS, Hua KT, Kuo ML, Lin MT (2014) Cyr61/CTGF/Nov family proteins in gastric carcinogenesis. World J Gastroenterol 20:1694–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dankner M, Ouellet V, Communal L, Schmitt E, Perkins D, Annis MG, Barrès V, Caron C, Mes-Masson AM, Saad F, Siegel PM, Network CPCB (2019) CCN3/nephroblastoma overexpressed is a functional mediator of prostate cancer bone metastasis that is associated with poor patient prognosis. Am J Pathol 189:1451–1461

    PubMed  Google Scholar 

  • Davies W (2019) An analysis of cellular communication network factor proteins as candidate mediators of postpartum psychosis risk. Front Psychiatry 10:876

    PubMed  PubMed Central  Google Scholar 

  • Dhar A, Ray A (2010) The CCN family proteins in carcinogenesis. Exp Oncol 32:2–9

    CAS  PubMed  Google Scholar 

  • Dombrowski Y, O’Hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, Fleville S, Eleftheriadis G, Zhao C, Naughton M, Hassan R, Moffat J, Falconer J, Boyd A, Hamilton P, Allen IV, Kissenpfennig A, Moynagh PN, Evergren E, Perbal B, Williams AC, Ingram RJ, Chan JR, Franklin RJM, Fitzgerald DC (2017) Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci 20:674–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan L, Schimmelmann M, Wu Y, Reisch B, Faas M, Kimmig R, Winterhager E, Köninger A, Gellhaus A (2020) CCN3 signaling is differently regulated in placental diseases preeclampsia and abnormally invasive placenta. Front Endocrinol Lausanne. 11:597549

    PubMed  PubMed Central  Google Scholar 

  • Escoté X, Gómez-Zorita S, López-Yoldi M, Milton-Laskibar I, Fernández-Quintela A, Martínez JA, Moreno-Aliaga MJ, Portillo MP (2017) Role of Omentin, vaspin, cardiotrophin-1, TWEAK and NOV/CCN3 in obesity and diabetes development. Int J Mol Sci 18:1770

    PubMed Central  Google Scholar 

  • Fong KW, Zhao JC, Kim J, Li S, Yang YA, Song B, Rittie L, Hu M, Yang X, Perbal B, Yu J (2017) Polycomb-mediated disruption of an androgen receptor feedback loop drives castration-resistant prostate cancer. Cancer Res 77:412–422

    CAS  PubMed  Google Scholar 

  • Gellhaus A, Dong X, Propson S, Maass K, Klein-Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E (2004) Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 279:36931–36942

    CAS  PubMed  Google Scholar 

  • Gupta N, Wang H, McLeod TL, Naus CC, Kyurkchiev S, Advani S, Yu J, Perbal B, Weichselbaum RR (2001) Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV). Mol Pathol 54:293–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Hong D, Iborra F, Sarno S, Enver T (2007) NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 316:590–593

    CAS  PubMed  Google Scholar 

  • Gupta R, Turati V, Brian D, Thrussel C, Wilbourn B, May G, Enver T (2020) Nov/CCN3 enhances cord blood engraftment by rapidly recruiting latent human stem cell activity. Cell Stem Cell 26:527–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henrot P, Moisan F, Laurent P, Manicki P, Kaulanjan-Checkmodine P, Jolivel V, Rezvani HR, Leroy V, Picard F, Boulon C, Schaeverbeke T, Seneschal J, Lazaro E, Taïeb A, Truchetet ME, Cario M (2020) Decreased CCN3 in systemic sclerosis endothelial cells contributes to impairedangiogenesis. J Invest Dermatol 140:1427–1434

    CAS  PubMed  Google Scholar 

  • Hollander JM, Zeng L (2019) The emerging role of glucose metabolism in cartilage development. Curr Osteoporos Rep 17:59–69

    PubMed  PubMed Central  Google Scholar 

  • Hoshijima M, Hattori T, Aoyama E, Nishida T, Yamashiro T, Takigawa M (2012) Roles of heterotypic CCN2/CTGF-CCN3/NOV and homotypic CCN2-CCN2 interactions in expression of the differentiated phenotype of chondrocytes. FEBS J 279:3584–3597

    CAS  PubMed  Google Scholar 

  • Huang X, Ni B, Mao Z, Xi Y, Chu X, Zhang R, Ma X, You H (2019) NOV/CCN3 induces cartilage protection by inhibiting PI3K/AKT/mTOR pathway. J Cell Mol Med 23:7525–7534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurvitz JR, Suwairi WM, Van Hul W, El-Shanti H, Superti-Furga A, Roudier J, Holderbaum D, Pauli RM, Herd JK, Van Hul EV, Rezai-Delui H, Legius E, Le Merrer M, Al-Alami J, Bahabri SA, Warman ML (1999) Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat Genet 23:94–98

    CAS  PubMed  Google Scholar 

  • Itoh S, Hattori T, Tomita N, Aoyama E, Yutani Y, Yamashiro T, Takigawa M (2013) CCN family member 2/connective tissue growth factor (CCN2/CTGF) has anti-aging effects that protect articular cartilage from age-related degenerative changes. PLoS ONE 8:e71156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janune D, Kubota S, Nishida T, Kawaki H, Perbal B, Iida S, Takigawa M (2011) Novel effects of CCN3 that may direct the differentiation of chondrocytes. FEBS Lett 585:3033–3040

    CAS  PubMed  Google Scholar 

  • Janune D, Abd El Kader T, Aoyama E, Nishida T, Tabata Y, Kubota S, Takigawa M (2017) Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage. J Bone Miner Metab 35:582–597

    CAS  PubMed  Google Scholar 

  • Ji X, Liu T, Zhao S, Li J, Li L, Wang E (2020) WISP-2, an upregulated gene in hip cartilage from the DDH model rats, induces chondrocyte apoptosis through PPARgamma in vitro. FASEB J 34:4904–4917

    CAS  PubMed  Google Scholar 

  • Jia Q, Dong Q, Qin L (2016) CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget 7:1203–1214

    PubMed  Google Scholar 

  • Joliot V, Martinerie C, Dambrine G, Plassiart G, Brisac M, Crochet J, Perbal B (1992) Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol 12:10–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaddour N. (2020) Physiological role of CCN5 in pancreatic beta cells: effects on proliferation, survival and insulin secretory function. Thesis submitted to McGill university in partial fulfillment of the requirements of the degree of Doctor of Philosophy - Division of Experimental Medicine, Faculty of Medicine, McGill University March 2020.

  • Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada T, Matsumura T, Ohgawara T, Maeda T, Perbal B, Lyons KM, Takigawa M (2008) Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 23:1751–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota S, Takigawa M (2007) CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 10:1–11

    CAS  PubMed  Google Scholar 

  • Kubota S, Takigawa M (2013) The CCN family acting throughout the body: recent research developments. Biomol Concepts 4:477–494

    CAS  PubMed  Google Scholar 

  • Kubota S, Maeda-Uematsu A, Nishida T, Takigawa M (2015) New functional aspects of CCN2 revealed by trans-omic approaches. J Oral Biosci 57:37–43

    Google Scholar 

  • Kuwahara M, Kadoya K, Kondo S, Fu S, Miyake Y, Ogo A, Ono M, Furumatsu T, Nakata E, Sasaki T, Minagi S, Takigawa M, Kubota S, Hattori T (2020) CCN3 (NOV) drives degradative changes in aging articular cartilage. Int J Mol Sci 21:7556

    CAS  PubMed Central  Google Scholar 

  • Kyurkchiev S, Yeger H, Bleau AM, Perbal B (2004) Potential cellular conformations of the CCN3(NOV) protein. Cell Commun Signal 2:9

    PubMed  PubMed Central  Google Scholar 

  • Leask A (2009) Yin and Yang: CCN3 inhibits the pro-fibrotic effects of CCN2. J Cell Commun Signal 3:161–162

    PubMed  PubMed Central  Google Scholar 

  • Leask A (2010) Yin and Yang Part Deux: CCN5 inhibits the pro-fibrotic effects of CCN2. J Cell Commun Signal 4:155–156

    PubMed  PubMed Central  Google Scholar 

  • Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810

    CAS  PubMed  Google Scholar 

  • Li J, Ye L, Owen S, Weeks HP, Zhang Z, Jiang WG (2015) Emerging role of CCN family proteins in tumorigenesis and cancer metastasis. Int J Mol Med 36:1451–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JY, Wang YD, Qi XY, Ran L, Hong T, Yang J, Yan B, Liao ZZ, Liu JH, Xiao XH (2019a) Serum CCN3 levels are increased in type 2 diabetes mellitus and associated with obesity, insulin resistance and inflammation. Clin Chim Acta 494:52–57

    CAS  PubMed  Google Scholar 

  • Li W, Liao X, Ning P, Cao Y, Zhang M, Bu Y, Lv J, Jia Q (2019b) Paracrine effects of CCN3 from non-cancerous hepatic cells increase signaling and progression of hepatocellular carcinoma. BMC Cancer 19:395

    PubMed  PubMed Central  Google Scholar 

  • Lin CG, Leu SJ, Chen N, Tebeau CM, Lin SX, Yeung CY, Lau LF (2003) CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J Biol Chem 278:24200–24208

    CAS  PubMed  Google Scholar 

  • Lin CG, Chen CC, Leu SJ, Grzeszkiewicz TM, Lau LF (2005) Integrin-dependent functions of the angiogenic inducer NOV (CCN3): implication in wound healing. J Biol Chem 280(9):8229–8237

    CAS  PubMed  Google Scholar 

  • Liu J, Ren Y, Kang L, Zhang L (2014) Overexpression of CCN3 inhibits inflammation and progression of atherosclerosis in apolipoprotein E-deficient mice. PLoS ONE 9:e94912

    PubMed  PubMed Central  Google Scholar 

  • Liu S, Han L, Wang X, Liu Z, Ding S, Lu J, Bi D, Mei Y, Niu Z (2015) Nephroblastoma overexpressed gene (NOV) enhances RCC cell motility through upregulation of ICAM-1 and COX-2 expression via Akt pathway. Int J Clin Exp Pathol 8:1302–1311

    PubMed  PubMed Central  Google Scholar 

  • Maeda-Uematsu A, Kubota S, Kawaki H, Kawata K, Miyake Y, Hattori T, Nishida T, Moritani N, Lyons KM, Iida S, Takigawa M (2014) CCN2 as a novel molecule supporting energy metabolism of chondrocytes. J Cell Biochem 115:854–865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maillard M, Cadot B, Ball RY, Sethia K, Edwards DR, Perbal B, Tatoud R (2001) Differential expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Mol Pathol 54(4):275–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manara MC, Perbal B, Benini S, Strammiello R, Cerisano V, Perdichizzi S, Serra M, Astolfi A, Bertoni F, Alami J, Yeger H, Picci P, Scotlandi K (2002) The expression of ccn3(nov) gene in musculoskeletal tumors. Am J Pathol 160:849–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita Y, Sakamoto K, Tamamura Y, Shibata Y, Minamizato T, Kihara T, Ito M, Katsube K, Hiraoka S, Koseki H, Harada K, Yamaguchi A (2013) CCN3 protein participates in bone regeneration as an inhibitory factor. J Biol Chem 288:19973–19985

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum L, Price S, Planque N, Perbal B, Pierce A, Whetton AD, Irvine AE (2006) A novel mechanism for BCR-ABL action: stimulated secretion of CCN3 is involved in growth and differentiation regulation. Blood 108:1716–1723

    CAS  PubMed  Google Scholar 

  • McCallum L, Lu W, Price S, Lazar N, Perbal B, Irvine AE (2009) CCN3: a key growth regulator in chronic myeloid leukaemia. J Cell Commun Signal 3:115–124

    PubMed  PubMed Central  Google Scholar 

  • Mizukawa T, Nishida T, Akashi S, Kawata K, Kikuchi S, Kawaki H, Takigawa M, Kamioka H, Kubota S (2021) RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions. J Cell Physiol. https://doi.org/10.1002/jcp.30348 (in Press)

    Article  PubMed  Google Scholar 

  • Naughton M, Moffat J, Eleftheriadis G, de la Vega GN, Young A, Falconer J, Hawkins K, Pearson B, Perbal B, Hogan A, Moynagh P, Loveless S, Robertson NP, Gran B, Kee R, Hughes S, McDonnell G, Howell O, Fitzgerald DC (2020) CCN3 is dynamically regulated by treatment and disease state in multiple sclerosis. J Neuroinflammation 17:349

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien TP, Yang GP, Sanders L, Lau LF (1990) Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol 10:3569–3577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohgawara T, Kubota S, Kawaki H, Kurio N, Abd El Kader T, Hoshijima M, Janune D, Shimo T, Perbal B, Sasaki A, Takigawa M (2011) Association of the metastatic phenotype with CCN family members among breast and oral cancer cells. J Cell Commun Signal 5:291–299

    PubMed  PubMed Central  Google Scholar 

  • Ouellet V, Tiedemann K, Mourskaia A, Fong JE, Tran-Thanh D, Amir E, Clemons M, Perbal B, Komarova SV, Siegel PM (2011) CCN3 impairs osteoblast and stimulates osteoclast differentiation to favor breast cancer metastasis to bone. Am J Pathol 178:2377–2388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal A., Huang W., Kleer C.G. (2010) CCN6 regulates breast cancer growth and invasion through modulation of IGF signaling and epithelial to mesenchymal transition. pp 105–109 in CCN proteins in Health and Diseases. Perbal A, Takigawa M, Perbal B. (eds) Springer, ISBN978–90–481–3778–7.

  • Paradis R, Lazar N, Antinozzi P, Perbal B, Buteau J (2013) Nov/Ccn3, a novel transcriptional target of FoxO1, impairs pancreatic β-Cell function. PLoS ONE 8:e64957

    PubMed  PubMed Central  Google Scholar 

  • Park M, Baek IJ, Kim H, Woo DK, Park YJ, Shim S (2015) CCN3 overexpression inhibits growth of callosal projections via upregulation of RAB25. Biochem Biophys Res Commun 461:456–462

    CAS  PubMed  Google Scholar 

  • Peidl A (2018) A friend in knee: CCN3 may inhibit osteoarthritis progression. J Cell Commun Signal 12:489–490

    PubMed  PubMed Central  Google Scholar 

  • Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J, Brush J, Taneyhill LA, Deuel B, Lew M, Watanabe C, Cohen RL, Melhem MF, Finley GG, Quirke P, Goddard AD, Hillan KJ, Gurney AL, Botstein D, Levine AJ (1998) WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci USA 95:14717–14722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perbal B (1999) Nuclear localisation of NOVH protein: a potential role for NOV in the regulation of gene expression. Mol Pathol 52:84–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perbal B (2001) NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol 54:57–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

    CAS  PubMed  Google Scholar 

  • Perbal B (2006) New insight into CCN3 interactions–nuclear CCN3: fact or fantasy? Cell Commun Signal 4:6

    PubMed  PubMed Central  Google Scholar 

  • Perbal B (2007) CCN3-mutant mice are distinct from CCN3-null mice. J Cell Commun Signal. 1:229–230

    CAS  PubMed  Google Scholar 

  • Perbal B (2009) Alternative splicing of CCN mRNAs it has been upon us. J Cell Commun Signal 3:153–157

    PubMed  PubMed Central  Google Scholar 

  • Perbal B (2013) CCN proteins: A centralized communication network. J Cell Commun Signal 7:169–177

    PubMed  PubMed Central  Google Scholar 

  • Perbal B (2018) The concept of the CCN protein family revisited: a centralized coordination network. J Cell Commun Signal 12:3–12

    PubMed  PubMed Central  Google Scholar 

  • Perbal A, Perbal B (2016) The CCN family of proteins: a 25th anniversary picture. J Cell Commun Signal. 10:177–190

    PubMed  PubMed Central  Google Scholar 

  • Perbal B, Zuntini M, Zambelli D, Serra M, Sciandra M, Cantiani L, Lucarelli E, Picci P, Scotlandi K (2008) Prognostic value of CCN3 in osteosarcoma. Clin Cancer Res 14:701–709

    CAS  PubMed  Google Scholar 

  • Perbal B, Lazar N, Zambelli D, Lopez-Guerrero JA, Llombart-Bosch A, Scotlandi K, Picci P (2009) Prognostic relevance of CCN3 in Ewing sarcoma. Hum Pathol 40:1479–1486

    CAS  PubMed  Google Scholar 

  • Perbal B, Tweedie S, Bruford E (2018) The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1-6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1–3 respectively. J Cell Commun Signal 12:625–629

    PubMed  PubMed Central  Google Scholar 

  • Perbal A, Takigawa, MT, Perbal B. (eds) (2010) CCN proteins in Health and disease Springer ISBN978–90–481–3778–7.

  • Planque N, Perbal B (2003) A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 3:15

    PubMed  PubMed Central  Google Scholar 

  • Planque N, Long Li C, Saule S, Bleau AM, Perbal B (2006b) Nuclear addressing provides a clue for the transforming activity of amino-truncated CCN3 proteins. J Cell Biochem 99(1):105–116

    CAS  PubMed  Google Scholar 

  • Planque N, Long Li C, Saule S, Bleau AM, Perbal B (2006a) Nuclear addressing provides a clue for the transforming activity of amino-truncated CCN3 proteins. J Cell Biochem 99:105–116

    CAS  PubMed  Google Scholar 

  • Proposal for a unified CCN nomenclature (2001) J Clin Pathol: Mol Pathol 54:108

  • Rachfal AW, Brigstock DR (2005) Structural and functional properties of CCN proteins. Vitam Horm 70:69–103

    CAS  PubMed  Google Scholar 

  • Repudi SR, Patra M, Sen M (2013) WISP3-IGF1 interaction regulates chondrocyte hypertrophy. J Cell Sci 126:1650–1658

    CAS  PubMed  Google Scholar 

  • Rittié L, Perbal B, Castellot JJ Jr, Orringer JS, Voorhees JJ, Fisher GJ (2011) Spatial-temporal modulation of CCN proteins during wound healing in human skin in vivo. J Cell Commun Signal 5:69–80

    PubMed  PubMed Central  Google Scholar 

  • Roddy KA, Boulter CA (2015) Targeted mutation of NOV/CCN3 in mice disrupts joint homeostasis and causes osteoarthritis-like disease. Osteoarthritis Cartilage 23:607–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sha W, Leask A (2011) CCN2 expression and localization in melanoma cells. J Cell Commun Signal 5:219–226

    PubMed  PubMed Central  Google Scholar 

  • Shimoyama S, Hiraoka S, Takemoto M, Koshizaka M, Tokuyama H, Tokuyama T, Watanabe A, Fujimoto M, Kawamura H, Sato S, Tsurutani Y, Saito Y, Perbal B, Koseki H, Yokote K (2010) CCN3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth and migration. Arterioscler Thromb Vasc Biol 30:675–682

    CAS  PubMed  Google Scholar 

  • Simmons DL, Levy DB, Yannoni Y, Erikson RL (1989) Identification of a phorbol ester-repressible v-src-inducible gene. Proc Natl Acad Sci USA 86:1178–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Wei Y, Cao J, Wu X, Mou D, Luo J, Li A, Zuo GW, Tang M (2018) CCN3 and DLL1 co-regulate osteogenic differentiation of mouse embryonic fibroblasts in a Hey1-dependent manner. Cell Death Dis 9:1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam MM, Lazar N, Navarro S, Perbal B, Llombart-Bosch A (2008) Expression of CCN3 protein in human Wilms’ tumors: immunohistochemical detection of CCN3 variants using domain-specific antibodies. Virchows Arch 452:33–39

    CAS  PubMed  Google Scholar 

  • Takigawa M (2013) CCN2: a master regulator of the genesis of bone and cartilage. J Cell Commun Signal 7:191–201

    PubMed  PubMed Central  Google Scholar 

  • Takigawa M (2018) An early history of CCN2/CTGF research: the road to CCN2 via hcs24, ctgf, ecogenin, and regenerin. J Cell Commun Signal 12:253–264

    PubMed  Google Scholar 

  • Tamura I, Rosenbloom J, Macarak E, Chaqour B (2001) Regulation of Cyr61 gene expression by mechanical stretch through multiple signaling pathways. Am J Physiol Cell Physiol 281:C1524–C1532

    CAS  PubMed  Google Scholar 

  • Tan Q, Wang Q, Kuang L, Zhang J, Peng X, Liang S, Liu M, Chen H, Chen S, Luo X, Qi H, Li C, Luo F, Huang S, Ni Z, Jin M, Su N, Yang J, Yang P, Chen B, Chen L, Du X, Xie Y, Chen L (2021) TGF-beta/Alk5 signaling prevents osteoarthritis initiation via regulating the senescence of articular cartilage stem cells. J Cell Physiol. https://doi.org/10.1002/jcp.30231

    Article  PubMed  Google Scholar 

  • Thomopoulos GN, Kyurkchiev S, Perbal B (2001) Immunocytochemical localization of NOVH protein and ultrastructural characteristics of NCI-H295R cells. J Submicrosc Cytol Pathol 33:251–260

    CAS  PubMed  Google Scholar 

  • Tong W, Geng Y, Huang Y, Shi Y, Xiang S, Zhang N, Qin L, Shi Q, Chen Q, Dai K, Zhang X (2015) In vivo identification and induction of articular cartilage stem cells by inhibiting NF-kappaB signaling in osteoarthritis. Stem Cells 33:3125–3137

    CAS  PubMed  Google Scholar 

  • Tran CM, Smith HE, Symes A, Rittié L, Perbal B, Shapiro IM, Risbud MV (2011) Transforming growth factor beta controls CCN3 expression in nucleus pulposus cells of the intervertebral disc. Arthritis Rheum 63:3022–3031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Twigg SM (2018) Regulation and bioactivity of the CCN family of genes and proteins in obesity and diabetes. J Cell Commun Signal 12:359–368

    PubMed  PubMed Central  Google Scholar 

  • Vallacchi V, Daniotti M, Ratti F, Di Stasi D, Deho P, De Filippo A, Tragni G, Balsari A, Carbone A, Rivoltini L, Parmiani G, Lazar N, Perbal B, Rodolfo M (2008) CCN3/nephroblastoma overexpressed matricellular protein regulates integrin expression, adhesion, and dissemination in melanoma. Cancer Res 68:715–723

    CAS  PubMed  Google Scholar 

  • van der Kraan PM, van den Berg WB (2012) Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20:223–232

    PubMed  Google Scholar 

  • van Roeyen CR, Eitner F, Scholl T, Boor P, Kunter U, Planque N, Gröne HJ, Bleau AM, Perbal B, Ostendorf T, Floege J (2008) CCN3 is a novel endogenous PDGF-regulated inhibitor of glomerular cell proliferation. Kidney Int 73:86–94

    PubMed  Google Scholar 

  • Wahab NA, Brinkman H, Mason RM (2001) Uptake and intracellular transport of the connective tissue growth factor: a potential mode of action. Biochem J 359:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesman KC, Wei L, Baughman C, Russo J, Gray MR, Castellot JJ (2010) CCN5, a secreted protein, localizes to the nucleus. J Cell Commun Signal 4:91–98

    PubMed  PubMed Central  Google Scholar 

  • Wong M, Kireeva ML, Kolesnikova TV, Lau LF (1997) Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb bud mesenchymal cells. Dev Biol 192:492–508

    CAS  PubMed  Google Scholar 

  • Wu W, Hu X, Zhou X, Klenotic PA, Zhou Q, Lin Z (2018) Myeloid deficiency of CCN3 exacerbates liver injury in a mouse model of nonalcoholic fatty liver disease. J Cell Commun Signal 12:389–399

    PubMed  Google Scholar 

  • Yeger H, Perbal B (2016) CCN family of proteins: critical modulators of the tumor cell microenvironment. J Cell Commun Signal 10:229–240

    PubMed  PubMed Central  Google Scholar 

  • Yoshioka Y, Ono M, Maeda A, Kilts TM, Hara ES, Khattab H, Ueda J, Aoyama E, Oohashi T, Takigawa M, Young MF, Kuboki T (2016) CCN4/WISP-1 positively regulates chondrogenesis by controlling TGF-beta3 function. Bone 83:162–170

    CAS  PubMed  Google Scholar 

  • Yu C, Le AT, Yeger H, Perbal B, Alman BA (2003) NOV (CCN3) regulation in the growth plate and CCN family member expression in cartilage neoplasia. J Pathol 201:609–615

    CAS  PubMed  Google Scholar 

  • Zhang C, van der Voort D, Shi H, Zhang R, Qing Y, Hiraoka S, Takemoto M, Yokote K, Moxon JV, Norman P, Rittié L, Kuivaniemi H, Atkins GB, Gerson SL, Shi GP, Golledge J, Dong N, Perbal B, Prosdocimo DA, Lin Z (2016a) Matricellular protein CCN3 mitigates abdominal aortic aneurysm. J Clin Invest 126:1282–1299

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sheu TJ, Hoak D, Shen J, Hilton MJ, Zuscik MJ, Jonason JH, O’Keefe RJ (2016b) CCN1 regulates chondrocyte maturation and cartilage development. J Bone Miner Res 31:549–559

    PubMed  Google Scholar 

  • Zuo GW, Kohls CD, He BC, Chen L, Zhang W, Shi Q, Zhang BQ, Kang Q, Luo J, Luo X, Wagner ER, Kim SH, Restegar F, Haydon RC, Deng ZL, Luu HH, He TC, Luo Q (2010) The CCN proteins: important signaling mediators in stem cell differentiation and tumorigenesis. Histol Histopathol 25:795–806

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Yoshiko Miyake for her secretarial assistance. This study was supported by JSPS KAKENHI Grant Numbers JP19K22716, JP19K10109 and JP20K09889.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kubota.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, S., Kawaki, H., Perbal, B. et al. Cellular communication network factor 3 in cartilage development and maintenance. J. Cell Commun. Signal. 15, 533–543 (2021). https://doi.org/10.1007/s12079-021-00629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-021-00629-z

Keywords

Navigation