Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TCF1 in T cell immunity: a broadened frontier

Abstract

TCF1 and its homologue LEF1 are historically known as effector transcription factors downstream of the WNT signalling pathway and are essential for early T cell development. Recent advances bring TCF1 into the spotlight for its versatile, context-dependent functions in regulating mature T cell responses. In the cytotoxic T cell lineages, TCF1 is required for the self-renewal of stem-like CD8+ T cells generated in response to viral or tumour antigens, and for preserving heightened responses to checkpoint blockade immunotherapy. In the helper T cell lineages, TCF1 is indispensable for the differentiation of T follicular helper and T follicular regulatory cells, and crucially regulates immunosuppressive functions of regulatory T cells. Mechanistic investigations have also identified TCF1 as the first transcription factor that directly modifies histone acetylation, with the capacity to bridge transcriptional and epigenetic regulation. TCF1 also has the potential to become an important clinical biomarker for assessing the prognosis of tumour immunotherapy and the success of viral control in treating HIV and hepatitis C virus infection. Here, we summarize the key findings on TCF1 across the fields of T cell immunity and reflect on the possibility of exploring TCF1 and its downstream transcriptional programmes as therapeutic targets for improving antiviral and antitumour immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TCF1/LEF1 and their known cofactors.
Fig. 2: TCF1-dependent regulatory circuits during thymic development.
Fig. 3: TCF1-dependent regulatory circuits that modulate CD4+ T cell differentiation.
Fig. 4: TCF1 marks and instructs key CD8+ T cell differentiation processes.

Similar content being viewed by others

References

  1. Arce, L., Yokoyama, N. N. & Waterman, M. L. Diversity of LEF/TCF action in development and disease. Oncogene 25, 7492–7504 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Raghu, D., Xue, H. H. & Mielke, L. A. Control of lymphocyte fate, infection, and tumor immunity by TCF-1. Trends Immunol. 40, 1149–1162 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, D. M. & Xue, H. H. Tcf1 in Encyclopedia of Signaling Molecules 2nd edn (ed. Choi, S.) 5327–5333 (Springer, 2018).

  4. Gullicksrud, J., Shan, Q. & Xue, H. H. Tcf1 at the crossroads of CD4+ and CD8+ T cell identity. Front. Biol. 12, 83–93 (2017).

    Article  CAS  Google Scholar 

  5. Verbeek, S. et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374, 70–74 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Staal, F. J., Luis, T. C. & Tiemessen, M. M. WNT signalling in the immune system: WNT is spreading its wings. Nat. Rev. Immunol. 8, 581–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Xue, H. H. & Zhao, D. M. Regulation of mature T cell responses by the Wnt signaling pathway. Ann. N. Y. Acad. Sci. 1247, 16–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Hosokawa, H. & Rothenberg, E. V. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol. 21, 162–176 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weber, B. N. et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476, 63–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Germar, K. et al. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc. Natl Acad. Sci. USA 108, 20060–20065 (2011). Refs. 9 and 10 demonstrate NOTCH-dependent induction of TCF1 in early thymic progenitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zuniga-Pflucker, J. C. T-cell development made simple. Nat. Rev. Immunol. 4, 67–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Harly, C. et al. A shared regulatory element controls the initiation of Tcf7 expression during early T cell and innate lymphoid cell developments. Front. Immunol. 11, 470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kueh, H. Y. et al. Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nat. Immunol. 17, 956–965 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Perez, L. et al. Functional definition of a transcription factor hierarchy regulating T cell lineage commitment. Sci. Adv. 6, eaaw7313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, W. et al. Single-cell analysis reveals regulatory gene expression dynamics leading to lineage commitment in early T cell development. Cell Syst. 9, 321–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng, Y. et al. Single-cell RNA sequencing resolves spatiotemporal development of pre-thymic lymphoid progenitors and thymus organogenesis in human embryos. Immunity 51, 930–948 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Lavaert, M. et al. Integrated scRNA-Seq identifies human postnatal thymus seeding progenitors and regulatory dynamics of differentiating immature thymocytes. Immunity 52, 1088–1104 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Yu, S. et al. The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity 37, 813–826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, F. et al. Exploring the stage-specific roles of Tcf-1 in T cell development and malignancy at single-cell resolution. Cell Mol. Immunol. 18, 644–659 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Tiemessen, M. M. et al. The nuclear effector of WNT-signaling, TCF1, functions as a T-cell-specific tumor suppressor for development of lymphomas. PLoS Biol. 10, e1001430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, S. & Xue, H. H. TCF-1 mediates repression of Notch pathway in T lineage-committed early thymocytes. Blood 121, 4008–4009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Emmanuel, A. O. et al. TCF-1 and HEB cooperate to establish the epigenetic and transcription profiles of CD4+CD8+ thymocytes. Nat. Immunol. 19, 1366–1378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schilham, M. W. et al. Critical involvement of TCF-1 in expansion of thymocytes. J. Immunol. 161, 3984–3991 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Okamura, R. M. et al. Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, X. et al. β-Catenin and γ-catenin are dispensable for T lymphocytes and AML leukemic stem cells. eLife 9, e55360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taniuchi, I. CD4 helper and CD8 cytotoxic T cell differentiation. Annu. Rev. Immunol. 36, 579–601 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Steinke, F. C. et al. TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4+ T cell fate and interact with Runx3 to silence CD4 in CD8+ T cells. Nat. Immunol. 15, 646–656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chopp, L. B. et al. An integrated epigenomic and transcriptomic map of mouse and human alphabeta T cell development. Immunity 53, 1182–1201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, L. et al. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nat. Immunol. 9, 1122–1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kojo, S. et al. Priming of lineage-specifying genes by Bcl11b is required for lineage choice in post-selection thymocytes. Nat. Commun. 8, 702 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xing, Y., Wang, X., Jameson, S. C. & Hogquist, K. A. Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nat. Immunol. 17, 565–573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xing, S. et al. Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nat. Immunol. 17, 695–703 (2016). This work reveals intrinsic HDAC activity in TCF1 and LEF1, and its contribution to establishing CD8+ T cell identity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeannet, G. et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111, 142–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. MacDonald, B. T. & He, X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb. Perspect. Biol. 4, a007880 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu, J. et al. Lrp5 and Lrp6 are required for maintaining self-renewal and differentiation of hematopoietic stem cells. FASEB J. 33, 5615–5625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, Z. et al. Cutting edge: beta-catenin-interacting TCF1 isoforms are essential for thymocyte survival but dispensable for thymic maturation transitions. J. Immunol. 198, 3404–3409 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Xie, H., Huang, Z., Sadim, M. S. & Sun, Z. Stabilized beta-catenin extends thymocyte survival by up-regulating Bcl-xL. J. Immunol. 175, 7981–7988 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Gounari, F. et al. Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat. Immunol. 2, 863–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Guo, Z. et al. Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. Blood 109, 5463–5472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gasperowicz, M. & Otto, F. Mammalian Groucho homologs: redundancy or specificity? J. Cell Biochem. 95, 670–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Xing, S. et al. Tle corepressors are differentially partitioned to instruct CD8+ T cell lineage choice and identity. J. Exp. Med. 215, 2211–2226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wheat, J. C. et al. The corepressor TLE4 is a novel regulator of murine hematopoiesis and bone development. PLoS ONE 9, e105557 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Hu, G. et al. Transformation of accessible chromatin and 3D nucleome underlies lineage commitment of early T cells. Immunity 48, 227–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson, J. L. et al. Lineage-determining transcription factor TCF-1 initiates the epigenetic identity of T cells. Immunity 48, 243–257 (2018). This work identifies TCF1 as a pioneer factor that increases chromatin accessibility at key gene loci to initiate the T cell transcriptional programme during thymic development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, Q. et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-γ. Nat. Immunol. 10, 992–999 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steinke, F. C. & Xue, H. H. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol. Res. 59, 45–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, J. et al. TCF-1 inhibits IL-17 gene expression to restrain Th17 immunity in a stage-specific manner. J. Immunol. 200, 3397–3406 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Mielke, L. A. et al. TCF-1 limits the formation of Tc17 cells via repression of the MAF-RORgammat axis. J. Exp. Med. 216, 1682–1699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Barra, M. M. et al. Transcription factor 7 limits regulatory T cell generation in the thymus. J. Immunol. 195, 3058–3070 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53, 971–984 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. van Loosdregt, J. et al. Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39, 298–310 (2013).

    Article  PubMed  Google Scholar 

  54. Xing, S. et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J. Exp. Med. 216, 847–866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, B. H. et al. TCF1 and LEF1 control Treg competitive survival and Tfr development to prevent autoimmune diseases. Cell Rep. 27, 3629–3645 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nish, S. A. et al. CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J. Exp. Med. 214, 39–47 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi, Y. S. et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat. Immunol. 16, 980–990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu, L. et al. The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection. Nat. Immunol. 16, 991–999 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, T. et al. TCF1 is required for the T follicular helper cell response to viral infection. Cell Rep. 12, 2099–2110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shao, P. et al. Cutting edge: Tcf1 instructs T follicular helper cell differentiation by repressing Blimp1 in response to acute viral infection. J. Immunol. 203, 801–806 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Choi, J. et al. Bcl-6 is the nexus transcription factor of T follicular helper cells via repressor-of-repressor circuits. Nat. Immunol. 21, 777–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gullicksrud, J. A. et al. Differential requirements for Tcf1 long isoforms in CD8+ and CD4+ T cell responses to acute viral infection. J. Immunol. 199, 911–919 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Li, F. et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat. Commun. 9, 5452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, X. et al. The histone methyltransferase EZH2 primes the early differentiation of follicular helper T cells during acute viral infection. Cell Mol. Immunol. 17, 247–260 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Li, F. et al. TFH cells depend on Tcf1-intrinsic HDAC activity to suppress CTLA4 and guard B-cell help function. Proc. Natl Acad. Sci. USA 118, e2014562118 (2021). This work reveals that in immunization-elicited TFH cells, TCF1 is not required for BCL-6 induction, but is essential for restraining excessive expression of co-inhibitory receptors.

    Article  CAS  PubMed  Google Scholar 

  68. Sage, P. T. & Sharpe, A. H. T follicular regulatory cells. Immunol. Rev. 271, 246–259 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Xu, L. et al. The kinase mTORC1 promotes the generation and suppressive function of follicular regulatory T cells. Immunity 47, 538–551 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Harty, J. T. & Badovinac, V. P. Shaping and reshaping CD8+ T-cell memory. Nat. Rev. Immunol. 8, 107–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, W. H. et al. Asymmetric PI3K signaling driving developmental and regenerative cell fate bifurcation. Cell Rep. 13, 2203–2218 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin, W. W. et al. CD8+ T lymphocyte self-renewal during effector cell determination. Cell Rep. 17, 1773–1782 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Danilo, M., Chennupati, V., Silva, J. G., Siegert, S. & Held, W. Suppression of Tcf1 by inflammatory cytokines facilitates effector CD8 T cell differentiation. Cell Rep. 22, 2107–2117 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pais Ferreira, D. et al. Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity 53, 985–1000 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl Acad. Sci. USA 107, 9777–9782 (2010). Refs. 78 and 79 are the first studies showing in vivo requirements for TCF1 in promoting longevity and recall response capacity of memory CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shan, Q. et al. The transcription factor Runx3 guards cytotoxic CD8+ effector T cells against deviation towards follicular helper T cell lineage. Nat. Immunol. 18, 931–939 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, X. & Xue, H. H. Cutting edge: generation of memory precursors and functional memory CD8+ T cells depends on T cell factor-1 and lymphoid enhancer-binding factor-1. J. Immunol. 189, 2722–2726 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao, D. M. et al. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J. Immunol. 184, 1191–1199 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Klenerman, P. & Oxenius, A. T cell responses to cytomegalovirus. Nat. Rev. Immunol. 16, 367–377 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Welten, S. P. M. et al. Tcf1+ cells are required to maintain the inflationary T cell pool upon MCMV infection. Nat. Commun. 11, 2295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu, J. et al. T cell factor 1 suppresses CD103+ lung tissue-resident memory T cell development. Cell Rep. 31, 107484 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). This study clearly defines TEX-stem cells and their dependence on TCF1 in the context of chronic viral infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He, R. et al. Follicular CXCR5- expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–428 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Beltra, J. C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shan, Q. et al. Ectopic Tcf1 expression instills a stem-like program in exhausted CD8+ T cells to enhance viral and tumor immunity. Cell Mol. Immunol. 18, 1262–1277 (2020).

    Article  PubMed  Google Scholar 

  98. Jadhav, R. R. et al. Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 14113–14118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, Y. et al. The transcription factor TCF1 preserves the effector function of exhausted CD8 T cells during chronic viral infection. Front. Immunol. 10, 169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1CD8+ tumor-infiltrating T cells. Immunity 50, 181–194 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019). Refs. 103 and 104 demonstrate that TCF1 is essential for maintaining the TEX-stem subset in CD8+ TILs.

    Article  CAS  PubMed  Google Scholar 

  105. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miron, M. et al. Human lymph nodes maintain TCF-1hi memory T cells with high functional potential and clonal diversity throughout life. J. Immunol. 201, 2132–2140 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Kratchmarov, R., Magun, A. M. & Reiner, S. L. TCF1 expression marks self-renewing human CD8+ T cells. Blood Adv. 2, 1685–1690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wieland, D. et al. TCF1+ hepatitis C virus-specific CD8+ T cells are maintained after cessation of chronic antigen stimulation. Nat. Commun. 8, 15050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sekine, T. et al. TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells. Sci. Immunol. 5, eaba7918 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018). This work shows that TCF1 expression in CD8+ T cells predicts positive clinical outcome in patients with melanoma treated with checkpoint blockade immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Harly, C. et al. The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nat. Immunol. 20, 1150–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. De Obaldia, M. E. & Bhandoola, A. Transcriptional regulation of innate and adaptive lymphocyte lineages. Annu. Rev. Immunol. 33, 607–642 (2015).

    Article  PubMed  Google Scholar 

  114. Fang, D. & Zhu, J. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. J. Exp. Med. 214, 1861–1876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chengalvala, M. V., Chennathukuzhi, V. M., Johnston, D. S., Stevis, P. E. & Kopf, G. S. Gene expression profiling and its practice in drug development. Curr. Genomics 8, 262–270 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu, S. et al. Hematopoietic and leukemic stem cells have distinct dependence on Tcf1 and Lef1 transcription factors. J. Biol. Chem. 291, 11148–11160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, F. et al. Prostaglandin E1 and its analog misoprostol inhibit human CML stem cell self-renewal via EP4 receptor activation and repression of AP-1. Cell Stem Cell 21, 359–373 (2017). This work uses TCF1/LEF1-dependent transcriptional programme as a therapeutic target to compromise the self-renewal of leukaemic stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Grosschedl, R., Giese, K. & Pagel, J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10, 94–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. He, B. et al. CD8+ T cells utilize highly dynamic enhancer repertoires and regulatory circuitry in response to infections. Immunity 45, 1341–1354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wolf, T. et al. Dynamics in protein translation sustaining T cell preparedness. Nat. Immunol. 21, 927–937 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and H.-H.X. researched data for the article; Q.S. contributed substantially to discussion of the content; X.Z. and H.-H.X. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Hai-Hui Xue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks I. Taniuchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Connectivity Map database: https://clue.io/cmap

Glossary

β-Catenin

A transcriptional co-activator that is post-translationally stabilized by activation of the WNT signalling pathway, and that engages multiple transcription factors including the TCF/LEF family for target gene regulation.

WNT signalling pathway

A signalling pathway that is initiated by WNT glycoprotein-mediated stimulation of Frizzled receptors, and leads to activation of β-catenin, calcium and/or planar cell polarity signalling cascades depending on the WNT ligands and cell context.

Pseudo-temporal reconstruction

A computational method of analysis of single-cell transcriptome by ordering individual cells based on the gradual transition of transcriptomic changes during differentiation processes, as if the cells are placed on a time axis.

ATAC-seq analysis

Assay for transposase-accessible chromatin using sequencing (ATAC-seq) is a method that uses the ability of transposase to access open regions in the genome and hence determines chromatin accessibility as a mechanism for gene expression.

Motif-based transcriptional activity projection

A computational method for the analysis of genome sequences with specific features, such as association with chromatin accessibility or histone marks, to predict direct binding and regulation by transcription factors based on their known consensus binding motifs.

BCL-6–BLIMP1 axis

A regulatory circuit whereby the transcription factors BCL-6 and BLIMP1 show recurrent, mutually antagonistic, effects, as observed in germinal cell B cell versus plasma cell, T follicular helper versus T helper 1 cell and TEX-stem versus TEX-term cell differentiation processes.

Granzymes

A group of proteases that are secreted by activated cytotoxic CD8+ T cells and natural killer cells that have the capacity to directly lyse intracellular pathogens and induce apoptosis of cells infected with intracellular pathogens.

EOMES–IL-2Rβ axis

A regulatory circuit in which the transcription factor EOMES positively regulates the expression of the IL-2 receptor β-chain and thus determines the responsiveness to the cytokines IL-2 and IL-15, as observed in effector and memory CD8+ T cells.

Connectivity Map database

An online resource maintained by the Broad Institute, which consists of genome-scale libraries that catalogue transcriptional responses to chemical, genetic and disease perturbations, and which can be explored for discovery of novel therapeutics. See Related links.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Shan, Q. & Xue, HH. TCF1 in T cell immunity: a broadened frontier. Nat Rev Immunol 22, 147–157 (2022). https://doi.org/10.1038/s41577-021-00563-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00563-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing