Skip to main content

Advertisement

Log in

Allometric models for non-destructive estimation of dry biomass and leaf area in Khaya senegalensis (Desr.) A. Juss., 1830 (Meliaceae), Pterocarpus erinaceus Poir., 1804 (Fabaceae) and Parkia biglobosa, Jack, R. Br., 1830 (Fabaceae)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

A Correction to this article was published on 16 July 2021

This article has been updated

Abstract

Key messages

Measuring biomass and leaf area using non-destructive methods is of great interest to avoid plant degradation. These data are necessary for biomass allocation and estimation of carbon distribution in trees using functional and structural growth models such as GREENLAB.

Abstract

Organ biomass and leaf area are important parameters in plant physiology and production. They are used in structural and functional plant models to simulate tree architecture but are difficult to determine rapidly. Using stem length and internode diameter and leaf length and width to estimate them is a rapid, non-destructive field approach. We used the method on Khaya senegalensis, Pterocarpus erinaceus and Parkia biglobosa in Côte d'Ivoire. Internodes and leaves of the three species were sampled in 2019 and 2020 on three categories of axis in the architecture of individuals of different ages to maximize size variability. All statistical relationships found in the linear, logarithmic, polynomial and power models used to estimate the dry biomass of organs and leaf area were significant in all three species (P = 0.0001). The best models were obtained with the logarithmic transformation of the data. Three equation (linear, power and polynomial) were sufficient to estimate internode dry biomass (IDM), leaf dry biomass (LDM) and leaf area (LA) from the dimensions of the internodes (Volume: VL) and leaves (rachis length: RCL, number of primary leaflets: NLt, length: LLtL and width: LLtW of the largest primary leaflet in Khaya senegalensis and Pterocarpus erinaceus, then number of secondary leaflets: NSeLt, length: LSeLtL and width: LSeLtW of the largest secondary leaflet in Parkia biglobosa). In the field, the scientist will therefore make a choice according to his convenience among these proposed models. The best relationships between the measured organ dimensions and estimated parameters were defined by the following equations: IDM = 0.45*VL + 0.02, LDM = 1.07*NLt*LLtL*LLtW-2.74 and LA = 0.83*NLt*LLtL*LLtW or LA = 0.08*[NLt*LLtL*LLtW]2 + 1.13*[NLt*LLtL*LLtW]-0.27 for Khaya senegalensis; IDM = 1.15*VL0.26, LDM = 0.71*RCL*LLtL*LLtW-1.64 and LA = 0.74*NLt*LtL*LtW + 0.15 or LA = 0.03*[NLt*LLtL*LLtW]2 + 0.65*[NLt*LLtL*LLtW] + 0.23 for Pterocarpus erinaceus then IDM = 1.45*VL0.39, LDM = 0.23*[NSeLt*LSeLtL*LSeLtW*NLt]2–0.4*[NSeLt*LSeLtL*LSeLtW*NLt]-0.11 and LA = 1.81*[NSeLt*LSeLtL*LSeLtW*NLt]0.65 for Parkia biglobosa. This method can be applied to estimate the organ biomass and leaf area of species of the same family as the target species in an agroforestry system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed in the current study are available from the corresponding author on reasonable request.

Change history

References

  • Adjanohoun E (1964) Végétation des savanes et des rochers découverts en Côte d'Ivoire centrale. ORSTOM, Paris, 178 p. https://www.documentation.ird.fr/hor/fdi:15113. Accessed on 25/07/2020.

  • Adji BI, Akaffou SD, Kouassi KH, Houphouet YP, Duminil J, Sabatier S (2020) Influence of different environments on germination parameters and seedling morphology in Khaya senegalensis (Desr.) A. Juss (Meliaceae). Am J Plant Sci 11:1579–1600. https://doi.org/10.4236/ajps.2020.1110114

    Article  CAS  Google Scholar 

  • Akassimadou H, Yao K (2014) La variabilité climatique en Côte d’Ivoire: entre perception sociales et réponse agricole. Cahier Agric 14(6):533–540

    Google Scholar 

  • Antunes WC, Pompelli MF, Carretero DM, DaMatta FM (2008) Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Ann Appl Biol 153:33–40

    Article  Google Scholar 

  • Bianco S, Pitelli RA, Pitelli AMCM (2003) Estimativa da area foliar de Typha latifolia usando dimenso es lineares do limbo foliar. Planta Daninha 21:257–261

    Article  Google Scholar 

  • Centritto M, Loreto F, Massacci A, Pietrini F, Villani MC, Zacchine M (2000) Improved growth and water use efficiency of cherry saplings under reduced light intensity. Ecol Res 15(4):385–392

    Article  Google Scholar 

  • De Reffye P, Hu B (2003) Relevant choices in botany and mathematics for building efficient dynamic plant growth models: the GreenLab case. In: Hu B, Jaeger M (eds) Plant growth models and applications. Tsinghua University Press/Springer, Beijing/Berlin, pp 87–107

    Google Scholar 

  • Demirsoy H (2009) Leaf area estimation in some species of fruit tree by using models as a non destructive method. Fruits 64(1):45–51

    Article  Google Scholar 

  • Demirsoy H, Demirsoy L, Uzun S, Ersoy B (2004) Non-destructive leaf area estimation in Peach. Eur J Hort Sci 69(4):S.144-S.146

    Google Scholar 

  • Demirsoy H, Demirsoy L, Ozturk A (2005) Improved model for the nondestructive estimation of strawberry leaf area. Fruits 60(1):69–73

    Article  Google Scholar 

  • Diao J, Reffye D, Lei X, Guo H, Letort V (2011) Simulation of the topological development of young eucalyptus using a stochastic model and sampling measurement strategy. Comput Electron Agric 80:105–114. https://doi.org/10.1016/j.compag.2011.10.019

    Article  Google Scholar 

  • Djaha JBA, N’da AAA, Koffi EK, Ballo CK, Coulibaly M (2012) Croissance et aptitude au greffage de deux génotypes d’anacardier (Anacardium occidentale L.) élites utilisées comme porte-greffe en Côte d’Ivoire. Int J Biol Chem Sci 6: 1453–1466. http://ajol.info/index.php/ijbcs10.4314/ijbcs.v6i4.5

  • Dumenu WK (2019) Assessing the impact of felling/export ban and CITES designation on exploitation of African rosewood (Pterocarpus erinaceus). Biol Conserv 236:124–133. https://doi.org/10.1016/j.biocon.2019.05.044

    Article  Google Scholar 

  • Elsner EA, Jubb GL (1988) Leaf area estimation of concord grape leaves from simple linear measurements. Am J Enol Vitic 39(1):95–97

    Google Scholar 

  • Ettien DJB (2004) Intensification de la production d’igname (Dioscorea spp) par la fertilisation minérale et l’identification de nouvelles variétés en zone forestière et savanicole de Côte d’Ivoire. Thèse de Doctorat unique en science de la terre, option Agro-pédologie. Université de Cocody, Abidjan, Côte d’Ivoire. 187 p. https://inveniov1.uvci.edu.ci/record/7548. Accessed on 14/06/2020

  • Fourcaud T, Zhang XP, Stokes A, Lambers H, Koerner C (2008) Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Ann Bot 101:1053–1063

    Article  Google Scholar 

  • Gaoue OG, Ticktin T (2008) Impacts of bark and foliage harvest on Khaya senegalensis (Meliaceae) reproductive performance in Benin. J Appl Ecol 45:34–40. https://doi.org/10.1111/j.1365-2664.2007.01381.x

    Article  Google Scholar 

  • Goba AE, Koffi G, Raoul SS, Leonie CK, Yeboa AK (2019) Structure démographique et régénération naturelle des peuplements naturelle de Pterocarpus erinaceus Poir. (Fabaceae) des savanes de Côte d’Ivoire. Bois Et Forêt Des Tropiques 341(3):5–14

    Article  Google Scholar 

  • Godin C, Caraglio Y (1998) A multiscale model of plant topological structures. J Theor Biol 191:1–46

    Article  CAS  Google Scholar 

  • Gottschalk KW (1994) Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum seedlings. Tree Physiol 14(7–9):735–749

    Article  Google Scholar 

  • Hallé F, Keller R (2019) Mais d’où viennent les plantes? Actes sud. ISBN: 978-2-330-068775-2, pp 179. https://www.actes-sud.fr/node/68060. Accessed on 11/09/2020

  • He J, Reddy GVP, Liu M, Shi P (2020) A general formula for calculating surface area of the similarly shaped leaves: evidence from six Magnoliaceae species. Global Ecol Conserv 23:e01129. https://doi.org/10.1016/j.gecco.2020.e01129

    Article  Google Scholar 

  • Hérault B, Anatole KN, Nklo O, Assandé A, Fabrice B, Brahima C, Doua-Bi Y, Koffi Y, Koffi KJC, Konaté I, Tiéoulé F, Wourro F, Zo-Bi IC, Louppe D (2020) The long-term performance of 35 tree species of sudanian West Africa in pure and mixed plantings. For Ecol Manag 468:118–171. https://doi.org/10.1016/j.foreco.2020.118171

    Article  Google Scholar 

  • Houndonougbo JSH, Kassa B, Mensah S, Salako VK, Glèlè-Kakaï R, Assogbadjo AE (2020) A global systematic review on conservation and domestication of Parkia biglobosa (Jacq.) R. Br. ex G. Don, an indigenous fruit tree species in Sub-Sahara African traditional parklands: current knowledge and future directions. Gen Resour Crop Evolut 67:1051–1066. https://doi.org/10.1007/s10722-020-00892-w

    Article  Google Scholar 

  • Huang W, Su X, Ratkowsky DA, Niklas KJ, Gielis J, Shi P (2019b) The scaling relationships of leaf biomass vs leaf surface area of 12 bamboo species. Glob Ecol Conserv 20:e00793. https://doi.org/10.1016/j.gecco.2019.e00793

    Article  Google Scholar 

  • Huang W, Ratkowsky DA, Hui C, Wang P, Su J, Shi P (2019a) Leaf fresh weight versus dry weight: which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests 10:256. https://doi.org/10.3390/f10030256

    Article  Google Scholar 

  • Huang W, Reddy GVP, Li Y, Larsen JB, Shi P (2020) Increase in absolute leaf water content tends to keep pace with that of leaf dry mass—evidence from bamboo plants. Symmetry 12(8):1–10. https://doi.org/10.3390/sym12081345

    Article  Google Scholar 

  • Huang L, Niinemets Ü, Ma J, Schrader J, Wang R, Shi P (2021) Plant age has a minor effect on non-destructive leaf area calculations in Moso bamboo (Phyllostachys edulis). Symmetry 13:369. https://doi.org/10.3390/sym13030369

    Article  Google Scholar 

  • Kersteins G, Hawes CW (1994) Response of growth and carbon allocation to elevated CO2 in young cherry (Prunus avium L) saplings in relation to root environment. New Phytol 128(4):607–614

    Article  Google Scholar 

  • Leroy C, Saint-Andre L, Auclair D (2007) Practical methods for nondestructive measurement of tree leaf area. Agrofor Syst 71:99–108. https://doi.org/10.1007/s10457-007-9077-2

    Article  Google Scholar 

  • Letort V, Sabatier S, Okoma MP, Jaeger M, Reffye DR (2020) Internal trophic pressure, a regulator of plant development? Insights from a stochastic functional–structural plant growth model applied to Coffea trees. Ann Bot 126:687–699. https://doi.org/10.1093/aob/mcaa023

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S, Niklas KJ, Wan Y, Holscher D, Hui C, Ding Y, Shi P (2020) Leaf shape influences the scaling of leaf dry mass vs. area: a test case using bamboos. Ann for Sci 77:11. https://doi.org/10.1007/s13595-019-0911-2

    Article  Google Scholar 

  • Liu M, Niklas KJ, Niinemets Ü, Hölscher D, Chen L, Shi P (2020) Comparison of the scaling relationships of leaf biomass versus surface area between spring and summer for two deciduous tree species. Forests 11:1010. https://doi.org/10.3390/f11091010

    Article  Google Scholar 

  • Louppe D, Ouattara N (1996) Les arboretums d’espèces locales en Nord Côte d’Ivoire. IDEFOR, pp 14. http://agritrop.cirad.fr/581418. Accessed on 18/03/2020.

  • Marron N, Villar M, Dreyer E, Delay D, Boudouresque E, Petit J-M, Delmotte FM, Guehl J-M, Brignolas F (2005) Diversity of leaf traits related to productivity in 31 Populus deltoides x Populus nigra clones. Tree Physiol 25:425–435

    Article  Google Scholar 

  • N’cho BS (1991). Modélisation de l’accès des racines de maïs (Zea mays) à l’azote. Expérimentation au champ en Centre Côte d’Ivoire. Mémoire de DIAT-ESAT, Montpellier (France) 22p

  • Okoma P, Akaffou S, De Reffye P, Hamon P, Hamon S, Konan O, Kouassi KH, Legnate H, Letort V, Sabatier S (2016) Estimation of stem and leaf dry biomass using a non-destructive method applied to African Coffea species. Agrofor Syst 92(3):667–675. https://doi.org/10.1007/s10457-016-0031-z

    Article  Google Scholar 

  • Picchioni GA, Weinbaum SA (1995) Retention and the kinetics of uptake and export of foliage-applied, labeled boron by apple, pear, prune, and sweet cherry leaves. J Am Soc Hort Sci 120(1):868

    Article  Google Scholar 

  • Pinto ACR, Rodrigues TJD, Barbosa JC, Leite IC (2004) Leaf area prediction models for Zinnia elegans Jacq., Zinnia haageana Regel. and ‘“profusion cherry.”’ Sci Agric 61:47–52

    Article  Google Scholar 

  • Rasband WS (2014) ImageJ. U.S. National Institutes of Health, Bethesda. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554542/. Accessed on 7/01/2020

  • Reffye DP, Hu B, Kang M, Letort V, Jaeger M (2021) Two decades of research with the GreenLab model in agronomy. Ann Bot 127:281–295. https://doi.org/10.1093/aob/mcaa172

    Article  PubMed  Google Scholar 

  • Séka K, Diallo AH, Kouassi NK, Aké S (2009) Incidence du Yam mosaic virus (YMV) et du Cucumber mosaic virus (CMV) sur des variétés de Dioscorea spp. Cultivées dans les régions de Bouaké et de Toumodi en Côte d’Ivoire. Int J Biol Chem Sci 3(4):694–703

    Google Scholar 

  • Seleznyova AN, Greer DH (2001) Effects of temperature and leaf position on leaf area expansion of Kiwifruit (Actinidia deliciosa) shoots: development of a modeling framework. Ann Bot 88:605–615

    Article  Google Scholar 

  • Serdar U, Demirsoy H (2006) Non-destructive leaf area estimation in chestnut. Sci Hortic 108:227–230

    Article  Google Scholar 

  • Shi P, Liu M, Yu X, Gielis J, Ratkowsky DA (2019) Proportional relationship between leaf area and the product of leaf length width of four types of special leaf shapes. Forests 10:178. https://doi.org/10.3390/f10020178

    Article  Google Scholar 

  • Shi P, Li Y, Niinemets Ü, Olson E, Schrader J (2021) Influence of leaf shape on the scaling of leaf surface area and length in bamboo plants. Trees Struct Funct 35:709–715. https://doi.org/10.1007/s00468-020-02058-8

    Article  Google Scholar 

  • Tondjo K, Brancheriau L, Sabatier SA, Kokutse AD, Akossou A, Kokou K, Fourcaud T (2015) Non-destructive measurement of leaf area and dry biomass for estimating photosynthesis production in Tectona grandis. Trees. https://doi.org/10.1007/s00468-015-1227

    Article  Google Scholar 

  • Tondjo K, Brancheriau L, Sabatier S, Kokutse AD, Kokou K, Jaeger M, De Reffye P, Fourcaud T (2018) Stochastic modelling of tree architecture and biomass allocation: application to teak (Tectona grandis L. f.), a tree species with polycyclic growth and leaf neoformation. Ann Bot. https://doi.org/10.1093/aob/mcy040

    Article  PubMed  PubMed Central  Google Scholar 

  • Uzun SC, Elik H (1999) Leaf area prediction models (uzc¸elik-1) for different horticultural plants. Tr J Agric for 23:645–650

    Google Scholar 

  • Westoby M, Wright IJ (2003) The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135:621–628

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Yu X, Hui C, Sandhu HS, Lin Z, Shi P (2019) Scaling Relationships between leaf shape and area of 12 Rosaceae Species. Symmetry 11:1255. https://doi.org/10.3390/sym11101255

    Article  Google Scholar 

  • Yu X, Shi P, Schrader J, Niklas KJ (2020) Nondestructive estimation of leaf area for 15 species of vines with different leaf shapes. Am J Bot 107(11):1481–1490. https://doi.org/10.1002/ajb2.1560

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed by the Ministry of Higher Education and Scientific Research of Côte d'Ivoire, the French Development Agency (AFD) and IRD (Institut de Recherche pour le Developpement) in the framework of PRESeD-CI 2 (Renewed Partnership for Research for Development in Côte d'Ivoire) and C2D (Debt Reduction Contract) of the AMRUGE-CI project (Support for the Modernization and Reform of Universities and Grandes Ecoles of Côte d'Ivoire). The authors are grateful to the Centre de Coopération International de Recherche Agronomique pour le Développement (CIRAD) for providing the technical equipment necessary to conduct the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beda Innocent Adji.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Communicated by R. Guy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adji, B.I., Akaffou, D.S., Kouassi, K.H. et al. Allometric models for non-destructive estimation of dry biomass and leaf area in Khaya senegalensis (Desr.) A. Juss., 1830 (Meliaceae), Pterocarpus erinaceus Poir., 1804 (Fabaceae) and Parkia biglobosa, Jack, R. Br., 1830 (Fabaceae). Trees 35, 1905–1920 (2021). https://doi.org/10.1007/s00468-021-02159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02159-y

Keywords

Navigation