Skip to main content
Log in

Screening and Identification of Newly Isolated Basic Red 9-Degrading Bacteria from Textile Wastewater and Their Ability to Produce Medium-Co-Long-Chain-Length Polyhydroxyalkanoates

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Newly isolated Basic Red 9-degrading bacteria were isolated from textile wastewater using a pretreatment method. Nine strains were isolated; however, only five strains accumulated polyhydroxyalkanoates (PHAs). Thereafter, PHA-producing strains were identified through 16S rDNA sequencing analysis and phylogenetic evaluation and were found to belong to Enterobacter with 100% identification. The five isolated strains were incubated with a PHAs-producing medium containing 100 mg/l Basic Red 9 (BR9) to study decolorization efficiency, and PHAs production. Enterobacter sp. strains TS3 and TS1L effectively decolorized the BR9 dye with degradation rates of 63.43% and 79.15%, respectively. PHAs production from TS3 and TS1L was also observed to be 75.34% and 72.32% of dry cell weight (DCW), respectively. Furthermore, Enterobacter sp. strains TS3 and TS1L accumulated medium-co-long-chain-length PHAs (mcl-co-lcl PHAs). This is the first report using Enterobacter strains to degrade BR9 dyes from textile wastewater and to assess their ability to produce mcl-co-lcl PHAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kemavongse K, Prasertsan P, Upaichit A, Methacanon P (2008) J Microbiol Biotechnol 24:2073

    Article  CAS  Google Scholar 

  2. Sangkharak K, Prasertsan P (2011) Afr J Biotechnol 10:17812

    CAS  Google Scholar 

  3. Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gouda MK, Swellam AE, Omar SH (2001) Microbiol Res 156:20

    Article  Google Scholar 

  5. Kim Y, Kim DY, Rhee YH (1999) Macromolecules 32:6058

    Article  CAS  Google Scholar 

  6. Sandoval A, Arias-Barrau E, Arcos M, Naharro G, Olivera ER, Luengo JM (2007) Environ Microbiol 9:737

    Article  CAS  PubMed  Google Scholar 

  7. Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biotechnol Lett 27:1405

    Article  CAS  PubMed  Google Scholar 

  8. Naheed N, Jamil N (2014) Braz J Microbiol 45:417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Patnaik PR (2005) Crit Rev Biotechnol 25:153

    Article  CAS  PubMed  Google Scholar 

  10. Koller M (2018) Molecules 23:362

    Article  PubMed Central  Google Scholar 

  11. Duman O, Tunc S, Polat TG (2015) Microporous Mesoporous Mater 210:17

    Article  Google Scholar 

  12. Martins AO, Canalli VM, Azevedo CMN, Pires M (2006) Dyes Pigm 68:227

    Article  CAS  Google Scholar 

  13. Zargar B, Parham H, Hatamie A (2009) Talanta 77:1328

    Article  CAS  PubMed  Google Scholar 

  14. IARC (2010) Some aromatic amines, organic dyes, and related exposures. Lyon, Franc

  15. Perdih F, Perdih A (2011) Cellulose 18:1139

    Article  CAS  Google Scholar 

  16. Nadaroglu H, Gungor AA, Celebi N (2015) Int J Environ Res Public Health 9:991

    CAS  Google Scholar 

  17. US national library of medicine (1992) Hazardous substances data bank (HSDB record nos. 2952 and 6192), Bethesda, MD

  18. Scaringelli FP, Saltzman BE, Frey SA (1967) Anal Chem 39:1709

    Article  CAS  PubMed  Google Scholar 

  19. Tamboli DP, Kurade MB, Waghmode TR, Joshi SM, Govindwar SP (2010) J Hazard Mater 182:169

    Article  CAS  PubMed  Google Scholar 

  20. Anouzla A, Abrouki Y, Souabi S, Safi M, Rhbal H (2009) J Hazard Mater 166:1302

    Article  CAS  PubMed  Google Scholar 

  21. APHA (2005) Standard methods for the examination of water and wastewater. Washington, DC

  22. Moosvi S, Kher X, Madamwar D (2007) Dyes Pigm 74:723

    Article  CAS  Google Scholar 

  23. Sangkharak K, Prasertsan P (2012) Biotechnol Bioprocess Eng 18:272

    Article  Google Scholar 

  24. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) Arch Microbiol 171:3

    Article  Google Scholar 

  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) Arch Microbiol 171:697

    Google Scholar 

  26. Aremu BR, Babalola OO (2015) Int J Environ Res 12:12356

    CAS  Google Scholar 

  27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) Mol Biol Evol 35:1547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Kumar S, Patel S, ChandraKalia V (2008) Bioresour Technol 99:5444

    Article  CAS  PubMed  Google Scholar 

  29. Shimizu H, Shioya S, Suga KI (1990) Eur J Appl Microbiol Biotechnol 7:1

    Google Scholar 

  30. Sangkharak K, Prasertsan P (2008) Electron J Biotechnol 11:173

    Article  Google Scholar 

  31. Manangan T, Shawaphun S (2010) Sci Asia 36:199

    Article  CAS  Google Scholar 

  32. Steinbüchel A, Wiese S (1992) Appl Microbiol Biotechnol 37:691

    Google Scholar 

  33. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Appl Environ Microbiol 54:1977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tamboli DP, Gomare SS, Kalme SS, Jadhav UU, Govindwar SP (2010) Int Biodeterior Biodegradation 64:755

    Article  CAS  Google Scholar 

  35. Steel RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill Book Company, New York

    Google Scholar 

  36. Amara AA, Steinbüchel A, Rehm BHA (2002) Appl Microbiol Biotechnol 59:477

    Article  CAS  PubMed  Google Scholar 

  37. Dircks K, Beun JJ, van Loosdrecht M, Heijnen JJ, Henze M (2001) Biotechnol Bioeng 73:85

    Article  CAS  PubMed  Google Scholar 

  38. Wang JG, Bakken LR (1998) Microb Ecol 35:94

    Article  CAS  PubMed  Google Scholar 

  39. de Lima TCS, Grisi BM, Bonato MCM (1999) Rev Microbiol 30:214

    Article  Google Scholar 

  40. Bouraie ME, Din WS (2016) Sustain Environ Res 26:206

    Article  Google Scholar 

  41. Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SM (2007) Bioresour Technol 98:2082

    Article  CAS  PubMed  Google Scholar 

  42. Gan HM, Shahir S, Ibrahim Z, Yahya A (2011) Chemosphere 82:507

    Article  CAS  PubMed  Google Scholar 

  43. Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Bioresour Technol 99:4635

    Article  CAS  PubMed  Google Scholar 

  44. Moosvi S, Keharia H, Madamwar D (2005) World J Microbiol Biotechnol 21:667

    Article  CAS  Google Scholar 

  45. Asma T, Askarne L, Addi EA, Assabbane A, Boubaker H (2018) J Mater Environ Sci 9:2822

    Google Scholar 

  46. Ceyhan N, Ozdemir G (2011) Afr J Microbiol Res 5:690

    CAS  Google Scholar 

  47. Samrot AV, Avinesh RB, Sukeetha SD, Senthilkumar P (2011) Appl Biochem Biotechnol 163:195

    Article  CAS  PubMed  Google Scholar 

  48. Wang H, Zheng XW, Su JQ, Tian Y, Xiong XJ, Zheng TL (2009) J Hazard Mater 171:654

    Article  CAS  PubMed  Google Scholar 

  49. Moutaouakkil A, Zeroual Y, Dzayri FZ, Talbi M, Lee K, Blaghen M (2003) Ann Microbiol 53:161

    CAS  Google Scholar 

  50. Jirasripongpun K, Nasanit R, Niruntasook J, Chotikasatian B (2007) Thammasat Int J Sci Tech 12:6

    Google Scholar 

  51. Chen ZQ, Li YB, Wen QX (2010) Huan Jing Ke Xue 31:828

    PubMed  Google Scholar 

  52. Arumugam A, Sandhya M, Ponnusami V (2014) Bioresour Technol 164:170

    Article  CAS  PubMed  Google Scholar 

  53. Wecker P, Moppert X, Simon-Colin C, Costa C, Berteaux-Lecellier V (2015) AMB Express 5:1

    Article  CAS  Google Scholar 

  54. IARC (2010) Magenta and CI Basic Red 9. Lyon, Franc

  55. Moreira F, Lenartovicz V, Souza CGM, Ramos EP, Peralta RM (2001) Braz J Micriobiol 32:15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support of the Thailand Science Research and Innovation (TSRI) through the Royal Golden Jubilee Ph.D. (RGJ-PHD) Program through grant number PHD/00073/2559 for RGJ-PHD. Acknowledgement are also made to the Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Saiyai Campus, Thailand, and the Department of Chemistry, Faculty of Science, Thaksin University, Phatthalung Campus, Thailand. Ken’ichiro MATSUMOTO.

Author information

Authors and Affiliations

Authors

Contributions

Miss TR performed the experiments and wrote the original manuscript; Assistant Prof. Dr. NC analyzed the statistic; and Dr. NC helped with the experiments. Dr.KU helped with the experiments. Associate Prof. Dr. KS participated in the design of this work, reviewed, the data analysis and edited the manuscript.

Corresponding author

Correspondence to Kanokphorn Sangkharak.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakkan, T., Chana, N., Chirapongsatonkul, N. et al. Screening and Identification of Newly Isolated Basic Red 9-Degrading Bacteria from Textile Wastewater and Their Ability to Produce Medium-Co-Long-Chain-Length Polyhydroxyalkanoates. J Polym Environ 30, 415–423 (2022). https://doi.org/10.1007/s10924-021-02206-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02206-2

Keywords

Navigation