Skip to main content
Log in

Characterization of Pseudomonas cichorii isolated from tomato and lettuce in Iran

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Stem and pith necrosis symptoms on tomato and midrib rot symptoms on lettuce were observed in West and East Azarbayjan of Iran. Infected organs of the plants were collected and bacterial strains were isolated on NA medium. Biochemical and physiological properties such as LOPAT test, fluorescent pigment production and utilization of carbon source, demonstrated that the strains were Pseudomonas cichorii. All strains were pathogenic on tomato and lettuce plants. To assess genetic diversity among the strains, BOX and ERIC-PCR analyses were employed. Clustering of ERIC and BOX-PCR results with UPGMA and Jaccard’s similarity coefficients showed that strains were clustered into two main groups at a similarity level of 52%. Strains of groups 1 and 2 isolated from lettuce and tomato, respectively. The gyrB, rpoD and 16S rRNA nucleotide sequences showed high similarity and the sequence similarity between the Iranian strains and P. cichorii reference strain were 98.9, 98.7 and 99.5%, indicating a close phylogenetic relationship between the strains. According to the past references and researches in Iran, this is the first report of isolation and identification of Pseudomonas cichorii, the causative agent of tomato pith necrosis and lettuce midirib rot in North West of Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berge O, Monteil CL, Bartoli C, Chandeysson C, Guilbaud C, Sands DC, Morris CE (2014) A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS ONE 9:e105547

    Article  PubMed  PubMed Central  Google Scholar 

  • Cottyn B, Heylen K, Heyrman J, Vanhouteghem K, Pauwelyn E, Bleyaert P, Van Vaerenbergh J, Höfte M, De Vos P, Maes M (2009) Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butter head lettuce in Flanders. Sys Appl Microb 32:211–225

    Article  CAS  Google Scholar 

  • Fariis JS (1969) On the cophenetic correlation coefficient. Sys Zool 18:279–285

    Article  Google Scholar 

  • Hildebrand DC, Schroth MN, Sands DC (1988) Pseudomonas, In: N. W. Schaad (Ed.), Laboratory Guide for the identification of plant pathogenic bacteria (pp. 60–80). 2nd edn. St. Paul, Minnesota, USA: APS Press

  • Hwang MSH, Morgan RL, Sarkar SF, Wang PW, Guttman DS (2005) Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microb 9:5182–5191

    Article  Google Scholar 

  • Jaccard P (1901) Étude comparative de la distribuition florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579

    Google Scholar 

  • Keshtkar A, Khodakaramian G, Rouhrazi K (2016) Isolation and characterization of Pseudomonas syringae pv. syringae which induce leaf spot on walnut. Eur J Plant Pathol 146:837–846

    Article  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Inter J Sys Evol Microb 62:716–721

    Article  CAS  Google Scholar 

  • Kimura MA (1980) Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Molec Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • King ED, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Medi 44:301–307

    CAS  Google Scholar 

  • Klement Z (1963) Method for the rapid detection of the pathogenicity of phytopathogenic Pseudomonas. Nature 199:299–300

    Article  CAS  PubMed  Google Scholar 

  • Lelliott RA, Stead DE (1987) Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • Lelliott RA, Billing E, Hayward AC (1966) A determinative scheme for the fluorescent plant pathogenic Pseudomonads. J Appl Microb 29:470–489

    CAS  Google Scholar 

  • Lonetto M, Gribskov M, Gross CA (1992) The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manceau C, Horvais A (1997) Assessment of genetic diversity among strains of Pseudomonas syringae by PCR restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Appl Environ Microb 63:498–505

    Article  CAS  Google Scholar 

  • Marques E, Borges RCF, Uesugi CH (2016) Identification and pathogenicity of Pseudomonas cichorii associated with a bacterial blight of gerbera in the Federal District. Horti Brasil 34:224–248

    Google Scholar 

  • Mirik M, Aysan Y, Sahin F (2011) Characterization of Pseudomonas cichorii isolated from different hosts in Turkey. Inter J Agri Biol 13:203–209

    Google Scholar 

  • Moore R, Dowding J, Bratt H, Gawron JM, Gorfu Y, Cheyer A (1996) Commandtalk: a spoken-language interface for battlefield simulation. Technical report, Artificial Intelligence Center, SRI International

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

  • Nosratnezhad F, Rouhrazi K, Khezrinezhad N (2018) Characterization and genetic diversity of Pseudomonas syringae isolates from stone fruits in north-western Iran. J Phytopath 166:516–524

    Article  CAS  Google Scholar 

  • Pernezny K, Datnoff L, Sommerfeld ML (1994) Brown stem of celery caused by Pseudomonas cichorii. Plant Dis 78:917–919

    Article  Google Scholar 

  • Rohlf FJ (1993) NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 2.0. New York, NY: Exeter Software

  • Rouhrazi K, Rahimian H (2012) Characterization of Iranian grapevine isolates of Rhizobium (Agrobacterium) spp. J Plant Pathol 94:555–560

    Google Scholar 

  • Ruan H, Shi N, Du Y, Chen F, Yang X, Gan L, Dai Y (2018) First report of Pseudomonas cichorii causing tomato pith necrosis in Fujian Province. China Plant Dis 103(1):145

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schaad NW, Jones JB, Chun W (2001) Laboratory guide for the identification of plant pathogenic bacteria, 3rd edn. Phytopathological Society St, Paul, Minnesota, USA

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco

    Google Scholar 

  • Stead DE, Simpkins SA, Weller SA, Hennessy J, Aspin A, Stanford H, Smith NC, Elphinstone JG (2003) Classification and identification of plant pathogenic Pseudomonas species by REP-PCR derived genetic fingerprints. In: Iacobellis NS, Collmer A, Hutcheson SW et al (eds) Pseudomonas syringae and related pathogens: Biology and genetics. Kluwer Academic Publishers, Dordrechts, pp 411–421

    Chapter  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tayeb LA, Ageron E, Grimont F, Grimont PAD (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microb 156:763–773

    Article  Google Scholar 

  • Timilsina S, Adkinson H, Testen AL, Newberry EA, Miller SA, Paret ML, Minsavage GV, Goss EM, Jones JB, Vallad GE (2017) A novel phylogroup of Pseudomonas cichorii identified following an unusual disease outbreak on tomato. Phytopathol 107:1298–1304

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustal_X windows interface: flexible strategies for multiple sequence alignement aided by quality analysis tools. Nucl Aci Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Trantas EA, Sarris PF, Mpalantinaki EE, Pentari MG, Ververidis F, Goumas DE (2013) A new genomovar of Pseudomonas cichorii, a causal agent of tomato pith necrosis. Eur J Plant Pathol 137:477–493

    Article  Google Scholar 

  • Verhille Baı ¨da, N, Dabboussi F, Hamze M, Izard D, Leclerc H (1999) Pseudomonas gessardii sp. nov. and Pseudomonas migulae sp. nov., two new species isolated from natural mineral waters. Int JSys Bacter 49(4):1559–1572

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution or repetitive DNA– sequences in eubacteria and application of fingerprinting of bacterial genomes. Nuc Aci Res 19:6823–6831

    Article  CAS  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth Molec Cell Biol 5:25–40

    CAS  Google Scholar 

  • Watt PM, Hickson ID (1994) Structure and function of type II DNA topoisomerases. Bio J 303:681–695

    CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletior DA, Lanem DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bac 173:697–703

    Article  CAS  Google Scholar 

  • Wilkie P, Dye DW (1974) Pseudomonas cichorii causing tomato and celery diseases in New Zealand. New Zealand J Agri Res 17:123–130

    Article  Google Scholar 

  • Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevil Nematollahi.

Ethics declarations

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors. It is original and has not been published elsewhere.

Conflict of interest

All authors declare that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, S., Nematollahi, S., Rouhrazi, K. et al. Characterization of Pseudomonas cichorii isolated from tomato and lettuce in Iran. J Plant Pathol 103, 853–861 (2021). https://doi.org/10.1007/s42161-021-00863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-021-00863-9

Keywords

Navigation