Skip to main content
Log in

Experimental Determination of Phase Equilibria in Fe-Cr-Ni-Al System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Alloys Fe-18Cr-9Ni-3Al, Fe-16Cr-18Ni-5Al, and Fe-20Cr-20Ni-5Al wt.% were prepared by vacuum arc melting and heat treated at 600 °C/514 days, 800 °C/56 days, 1000 °C/32 days, and 1100 °C/15 days. The microstructures of the samples were characterized to identify the equilibrium phases at each temperature. The compositions of the phases were measured with SEM-EDS. Solidus and liquidus were determined using DSC. The experimental results were compared with equilibrium thermodynamic calculations. Significant differences were observed for solidus, solvus temperatures, and compositions of the equilibrium phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.A. Pint, R. Peraldi, and P.J. Maziasz, The Use of Model Alloys to Develop Corrosion-Resistant Stainless Steels, Mater. Sci. Forum., 2004, 461–464, p 815–822. https://doi.org/10.4028/www.scientific.net/MSF.461-464.815

    Article  Google Scholar 

  2. V. Ramakrishnan, J.A. McGurty, and N. Jayaraman, Oxidation of High-Aluminum Austenitic Stainless Steels, Oxid. Met., 1988, 30, p 185–200. https://doi.org/10.1007/BF00666596

    Article  Google Scholar 

  3. D.V.V. Satyanarayana, G. Malakondaiah, and D.S. Sarma, Steady State Creep Behaviour of NiAl Hardened Austenitic Steel, Mater. Sci. Eng. A., 2002, 323, p 119–128. https://doi.org/10.1016/S0921-5093(01)01342-9

    Article  Google Scholar 

  4. T. Fujioka, M. Kinugasa, S. Iizumi, S. Teshima and I. Shimizu, United States Patent 3989514, 1976.

  5. J.A. McGurty, Austenitic Iron Alloys, United States Patent 4086085, 1978.

  6. Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz and B.A. Pint, Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42, p 922–931. https://doi.org/10.1007/s11661-010-0295-2.

  7. M.P. Brady, J. Magee, Y. Yamamoto, D. Helmick, and L. Wang, Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance, Mater. Sci. Eng. A., 2014, 590, p 101–115. https://doi.org/10.1016/j.msea.2013.10.014

    Article  Google Scholar 

  8. M.P. Brady, G. Muralidharan, Y. Yamamoto, and B.A. Pint, Development of 1100 °C Capable Alumina-Forming Austenitic Alloys, Oxid. Met., 2017, 87, p 1–10. https://doi.org/10.1007/s11085-016-9667-3

    Article  Google Scholar 

  9. H. Kim, H. Jang, G. Obulan Subramanian, C. Kim and C. Jang, Development of alumina-forming duplex stainless steels as accident-tolerant fuel cladding materials for light water reactors, J. Nucl. Mater., 2018, 507, p 1–14. https://doi.org/10.1016/j.jnucmat.2018.04.027.

  10. D.H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya and K. Hono, Microstructural evolution in 13Cr–8Ni–2.5Mo–2Al martensitic precipitation-hardened stainless steel, 2005, 394, p 285–295. https://doi.org/10.1016/j.msea.2004.12.002.

  11. S.M. Zhu, S.C. Tjong, and J.K.L. Lai, Creep behavior of a β′(NiAl) precipitation strengthened ferritic Fe-Cr-Ni-Al alloy, Acta Mater., 1998, 46, p 2969–2976. https://doi.org/10.1016/S1359-6454(98)00022-6

    Article  ADS  Google Scholar 

  12. C. Stallybrass, and G. Sauthoff, Ferritic Fe-Al-Ni-Cr alloys with coherent precipitates for high-temperature applications, Mater. Sci. Eng. A., 2004, 387–389, p 985–990. https://doi.org/10.1016/j.msea.2004.01.108

    Article  Google Scholar 

  13. C. Stallybrass, A. Schneider, and G. Sauthoff, The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe-Al-Ni-Cr alloys, Intermetallics, 2005, 13, p 1263–1268. https://doi.org/10.1016/j.intermet.2004.07.048

    Article  Google Scholar 

  14. Z.K. Teng, C.T. Liu, G. Ghosh, P.K. Liaw, and M.E. Fine, Effects of Al on the microstructure and ductility of NiAl-strengthened ferritic steels at room temperature, Intermetallics, 2010, 18, p 1437–1443. https://doi.org/10.1016/j.intermet.2010.03.026

    Article  Google Scholar 

  15. Z.K. Teng, F. Zhang, M.K. Miller, C.T. Liu, S. Huang, Y.T. Chou, R.H. Tien, Y.A. Chang, and P.K. Liaw, New NiAl-strengthened ferritic steels with balanced creep resistance and ductility designed by coupling thermodynamic calculations with focused experiments, Intermetallics, 2012, 29, p 110–115. https://doi.org/10.1016/j.intermet.2012.05.007

    Article  Google Scholar 

  16. J. Dunning, "A Sulfidation-and Oxidation-resistant Ferritic Stainless Steel Containing Aluminum", United States Bureau of mines, 8856, 1984.

  17. R. Taillard, A. Pineau and B.J. Thomas, The precipitation of the intermetallic compound NiAl in Fe-19wt.%Cr alloys, Mater. Sci. Eng., 1982, 54, p 209–219. https://doi.org/10.1016/0025-5416(82)90115-X.

  18. R. Taillard and A. Pineau, Room temperature tensile properties of Fe-19wt.%Cr alloys precipitation hardened by the intermetallic compound NiAl, Mater. Sci. Eng., 1982, 56, p 219–231. https://doi.org/10.1016/0025-5416(82)90097-0.

  19. J.R. Regina, J.N. Dupont and A.R. Marder, The effect of chromium on the weldability and microstructure of Fe-Cr-Al weld cladding, Weld. J. (Miami, Fla)., 2007, 86, p 170-178.

  20. J.H. Davidson, Research on New Alloys for Electric Resistance Furnaces, Electricite et Progres. Une Realite dans l'Industrie des Metaux, Versailles, France, Apr. 1978, IVA. 1. 1-IVA. 1. 12.

  21. F. Yin, C. Wu, Z. Li et al., Phase Equilibrium of the Fe-Cr-Ni-Al Quaternary System at 900 °C, J. Phase Equilib. Diffus., 2013, 34, p 181–187. https://doi.org/10.1007/s11669-013-0232-3

    Article  Google Scholar 

  22. C. Wu, C. Zhou, J. Zeng, Y. Liu, H. Tu and X. Su, Effects of Annealing at 800 and 1000 °C on Phase Precipitates and Hardness of Al7Cr20FexNi73-x alloys, 2021, 31, p 734–743. https://doi.org/10.1016/S1003-6326(21)65534-6.

  23. L. Ek, "Experimental evaluation of the Fe-20Cr-5Al-Ni system", Swedish Institute for Metals Research, IM-2004-109, Stockholm, 2004.

  24. R. Ojha, K. Kulkarni, T. Helander, and K.C.H. Kumar, Diffusion Couple Experiments and Calculations in Fe-Cr-Ni-Al System at 800–1000 °C, J. Alloys Compd., 2021, 863, 158061. https://doi.org/10.1016/j.jallcom.2020.158061

    Article  Google Scholar 

  25. W.J. Boettinger, U.R. Kattner, and K.-W. Moon, DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing: NIST Recommended Practice Guide Special Publication, Natl. Inst. Stand. Technol., 2006, p 960–1015

    Google Scholar 

  26. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9, p 153–190. https://doi.org/10.1016/0364-5916(85)90021-5

    Article  Google Scholar 

  27. Thermo-Calc Software TCFE Steels/Fe- base alloys database version 9.2 (Accessed 3 February 2021).

  28. Thermo-Calc Software TCNI Ni-base Superalloys database version 9 (Accessed 3 February 2021).

Download references

Acknowledgment

The authors are grateful to Dr Manas Paliwal of Sandvik Materials Technology, India, for his support in DSC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Ojha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, R., Helander, T. & Kumar, K.C.H. Experimental Determination of Phase Equilibria in Fe-Cr-Ni-Al System. J. Phase Equilib. Diffus. 42, 428–438 (2021). https://doi.org/10.1007/s11669-021-00896-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00896-8

Keywords

Navigation