Skip to main content
Log in

Assessment of future trends on groundwater quality in a nitrate vulnerable zone (Esposende–Vila do Conde sector, NW Portugal): towards a combined conceptual and mass transport modelling

Évaluation des tendances futures de la qualité des eaux souterraines dans une zone vulnérable aux nitrates (secteur Esposende-Vila do Conde, NW Portugal): vers une modélisation combinée conceptuelle et de transport de masse

Evaluación de tendencias futuras en la calidad de las aguas subterráneas en una zona vulnerable a los nitratos (sector Esposende-Vila do Conde, noroeste de Portugal): hacia una modelización conceptual y combinada con el transporte de masas

评估易受硝酸盐影响区(葡萄牙西北部Esposende–Vila do Conde地区)地下水质量的未来趋势:结合概念模型与质量传输模型来

Avaliação de tendência da qualidade da água subterrânea numa zona vulnerável aos nitratos (Esposende–Vila do Conde, NW Portugal): combinação dos modelos conceptual e numérico com transporte de massa

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Nitrate contamination of groundwater is an important public health issue worldwide. For environmental and public health reasons, water should not contain more than 50 mg/L NO3. An aquifer for which this limit is exceeded can be designated as a nitrate vulnerable zone (NVZ) and subject to action programs to minimize the NO3 input. The study aims to assess future trends of groundwater quality and to predict the time required for groundwater to achieve the environmental goals in the Esposende–Vila do Conde NVZ (Portugal). Flow and transient nitrate transport modelling were performed using the FEFLOW software. The numerical model represents the saturated zone of phreatic aquifers, designed in a three-dimensional three-layer model. The calibration process was completed through the tool FEPEST. Sensitivity analysis was performed to investigate the model response to changes in hydraulic parameters and aquifer recharge. Two major simulations of mass transport were performed considering different options on nitrogen loads: (1) agricultural nitrogenous loads of diffuse origin; (2) nitrogen loads from agricultural and livestock sectors together. The results show that the minimization measures imposed in the NVZ are effective, shown by the groundwater nitrate concentration decreasing over time; however, concentrations above 50 mg/L will persist for the next two decades in both simulated scenarios. Combining the conceptual hydrogeological model, geovisualization techniques, and numerical flow and mass transport modelling has been shown as a comprehensive approach to understanding the measures needed for sustainable water resources management and particularly to predicting hydraulic heads and NO3 dispersion in aquifers.

Résumé

La contamination des eaux souterraines par les nitrates est un problème de santé publique important dans le monde entier. Pour des raisons environnementales et de santé publique, l’eau ne devrait pas contenir plus de 50 mg/L de NO3. Un aquifère pour lequel cette limite est dépassée peut être désigné comme une zone vulnérable aux nitrates (ZVN) et faire l’objet de programmes d’action visant à minimiser l’apport de NO3. L’étude vise à évaluer les tendances futures de la qualité des eaux souterraines et à prédire le temps nécessaire pour que les eaux souterraines atteignent les objectifs environnementaux dans la ZVN d’Esposende-Vila do Conde (Portugal). La modélisation de l’écoulement et du transport transitoire des nitrates a été réalisée à l’aide du logiciel FEFLOW. Le modèle numérique représente la zone saturée des aquifères phréatiques, conçue dans un modèle tridimensionnel à trois couches. Le processus de calibration a été réalisé grâce à l’outil FEPEST. Une analyse de sensibilité a été réalisée pour étudier la réponse du modèle aux changements des paramètres hydrauliques et de la recharge de l’aquifère. Deux grandes simulations du transport de masse ont été réalisées en considérant différentes options sur les charges d’azote : (1) les charges azotées agricoles d’origine diffuse ; (2) les charges azotées des secteurs de l’agriculture et de l’élevage. Les résultats montrent que les mesures de réduction imposées dans la ZVN sont efficaces, comme en témoigne la diminution de la concentration de nitrates dans les eaux souterraines au fil du temps. Cependant, les concentrations supérieures à 50 mg/L persisteront pendant les deux prochaines décennies dans les deux scénarios simulés. La combinaison du modèle hydrogéologique conceptuel, des techniques de géovisualisation et de la modélisation numérique de l’écoulement et du transport de masse s’est avérée être une approche globale pour comprendre les mesures nécessaires à la gestion durable des ressources en eau et en particulier pour prévoir les charges hydrauliques et la dispersion du NO3 dans les aquifères.

Resumen

La contaminación por nitratos de las aguas subterráneas es un importante problema de salud pública en todo el mundo. Por razones medioambientales y de salud pública, el agua no debe contener más de 50 mg/L de NO3. Un acuífero en el que se supere este límite puede ser designado como zona vulnerable a los nitratos ( NVZ) y estar sujeto a programas de actuación para minimizar la entrada de NO3. El estudio pretende evaluar las tendencias futuras de la calidad de las aguas subterráneas y predecir el tiempo necesario para que las aguas subterráneas alcancen los objetivos medioambientales en la NVZ de Esposende-Vila do Conde (Portugal). La modelización del flujo y del transporte transitorio de nitratos se llevó a cabo mediante el software FEFLOW. El modelo numérico representa la zona saturada de los acuíferos freáticos, diseñada en un modelo tridimensional de tres capas. El proceso de calibración se completó mediante la herramienta FEPEST. Se realizó un análisis de sensibilidad para investigar la respuesta del modelo a cambios en los parámetros hidráulicos y en la recarga del acuífero. Se realizaron dos grandes simulaciones de transporte de masas considerando diferentes opciones de cargas de nitrógeno (1) cargas nitrogenadas agrícolas de origen difuso; (2) cargas nitrogenadas en conjunto de los sectores agrícola y ganadero. Los resultados muestran que las medidas de minimización impuestas en la NVZ son eficaces, lo que se demuestra por la disminución de la concentración de nitrato en las aguas subterráneas a lo largo del tiempo. Sin embargo, las concentraciones superiores a 50 mg/L persistirán durante las dos próximas décadas en ambos escenarios simulados. La combinación del modelo hidrogeológico conceptual, las técnicas de geovisualización y la modelización numérica del flujo y el transporte de masas se ha mostrado como un enfoque global para comprender las medidas necesarias para la gestión sostenible de los recursos hídricos y, en particular, para predecir las alturas hidráulicas y la dispersión del NO3 en los acuíferos.

摘要

地下水的硝酸盐污染是全球范围内重要的公共卫生问题。出于环境和公共卫生的考虑,水中的NO3-含量不得超过50 mg / L。超出此标准的含水层可以指定为硝酸盐易受污染区(NVZ),并应采取行动计划以最大程度地减少NO3-的输入。该研究旨在评估未来的地下水水质趋势,并预测实现地下水达到Esposende–Vila do Conde NVZ(葡萄牙)环境目标所需的时间。使用FEFLOW软件进行水流和非稳定硝酸盐迁移建模。数值模型设计了三维三层模型,代表了潜水含水层的饱和带。通过工具FEPEST完成了模型参数率定。通过敏感性分析研究了模型对水力参数和含水层补给量变化的响应。考虑到氮负荷的不同选择,进行了两个主要的质量迁移模拟:(1)分散来源的农业氮负荷;(2)来自农业和畜牧业的氮负荷加在一起。结果表明,NVZ中施加的最小化措施是有效的,这表现为地下水硝酸盐浓度随时间降低。但是,在两种模拟情况下,超过50 mg / L的浓度将在接下来的二十年中持续存在。结合水文地质概念模型,地理可视化技术以及数值流和质量输运模型已被证明是理解可持续水资源管理所需措施的综合方法,尤其是预测含水层中水位和NO3-扩散的方法。

Resumo

A contaminação de águas subterrâneas por nitrato é um importante problema de saúde pública em todo o mundo. Por razões ambientais e de saúde humana, a água não deve conter concentrações superiores a 50 mg/L de NO3. Um aquífero onde há excedência desta norma de qualidade pode ser designado como Zona Vulnerável ao Nitrato de Origem Agrícola (ZV) e sujeito a um Programa de Ação para limitar a entrada de NO3. Este estudo visa avaliar a evolução da qualidade das águas subterrâneas na ZV de Esposende-Vila do Conde (Portugal) e prever o tempo necessário para que recuperem os objetivos ambientais. A modelação de fluxo subterrâneo e transporte de nitrato foi realizada com recurso ao software FEFLOW. O modelo numérico representa a zona saturada de aquíferos freáticos, através de um modelo tridimensional de três camadas. O modelo foi calibrado com o recurso à ferramenta FEPEST. A análise de sensibilidade foi realizada para investigar a resposta do modelo a alterações de parâmetros hidráulicos e recarga dos aquíferos. Foram efetuadas duas simulações de transporte de massa com diferentes cargas de nitrogénio: (1) cargas de nitrogénio de origem agrícola e difusa; (2) cargas de nitrogénio dos setores agrícola e pecuário. Os resultados mostram que as medidas do Programa de Ação até agora impostas na ZV são eficazes, dado que as projeções das concentrações de nitrato nas águas subterrâneas evidenciam uma diminuição ao longo do tempo. No entanto, concentrações acima de 50 mg/L persistirão nas próximas duas décadas em ambos os cenários simulados. Combinar o modelo hidrogeológico conceptual, técnicas de geovisualização e modelação numérica do fluxo subterrâneo com transporte de massa, demonstra ser uma abordagem completa para compreender as medidas necessárias para a gestão sustentável de recursos hídricos e, particularmente, simular níveis piezométricos e a dispersão de NO3 em aquíferos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afonso MJ, Chaminé HI, Carvalho JM, Marques JM, Gomes A, Araújo MA, Fonseca PE, Teixeira J, Marques da Silva MA, Rocha FT (2007) Urban groundwater resources: a case study of Porto City in northwest Portugal. In: Howard KWF (ed) Urban groundwater: meeting the challenge. International Association of Hydrogeologists Selected Papers SP8. Taylor and Francis Group, London, pp 271–287. https://doi.org/10.1201/9780203947050

    Chapter  Google Scholar 

  • Agostinho JM, Fernando RM (2005) Manual técnico: a fertilização azotada na zona vulnerável N° 1. Projeto AGRO 35 [Technical manual: nitrogen fertilizer appliation in vulnerable zone No. 1. AGRO 35 project]. Instituto Nacional de Investigação Agrária e Pescas, Lisboa

  • Aguiar A, Melo A, Mansilha C, Ferreira I (2012) Vegetables production in NW Portugal, agriculture practices and groundwater quality. Acta Hortic 936:61–70. https://doi.org/10.17660/ActaHortic.2012.936.6

    Article  Google Scholar 

  • Almeida C, Mendonça JL, Jesus MR, Gomes AJ (2000) Sistemas aquíferos de Portugal Continental. 3 Volumes. Instituto da Água & Centro de Geologia da Universidade de Lisboa, Lisboa

    Google Scholar 

  • APA – Agência Portuguesa do Ambiente (2016) Plano de Gestão de Região Hidrográfica: Parte 2 - Caraterização e Diagnóstico. Região Hidrográfica do Cávado, Ave e Leça (RH2) [Hydrographic Region Management Plan: part 2—characterization and diagnosis. Hydrographic Region of Cávado, Ave and Leça (RH2)]. Agência Portuguesa do Ambiente. PGRH2 2016/2021, Lisboa. https://www.apambiente.pt/_zdata/Politicas/Agua/PlaneamentoeGestao/PGRH/2016-2021/PTRH2/PGRH2_Parte1.pdf. Accessed November 2019

  • Barnett B, Townley LR, Post V, Evans RE, Hunt RJ, Peeters L, Richardson S, Werner AD, Knapton A, Boronkay A (2012) Australian groundwater modelling guidelines. Waterlines report, National Water Commission, Canberra, Australia, pp 57–78

    Google Scholar 

  • Barroso MF, Ramalhosa MJ, Olhero A, Antão MC, Pina MF, Guimarães L, Teixeira J, Afonso MJ, Delerue-Matos C, Chaminé HI (2015) Assessment of groundwater contamination in an agricultural peri-urban area (NW Portugal): an integrated approach. Environ Earth Sci 73(6):2881–2894. https://doi.org/10.1007/s12665-014-3297-3

    Article  Google Scholar 

  • Boy-Roura M, Menció A, Mas-Pla J (2013) Temporal analysis of spring water data to access nitrate inputs to groundwater in an agricultural area (Osona, NE Spain). Sci Tot Environ 452–453:433–445. https://doi.org/10.1016/j.scitotenv.2013.02.065

    Article  Google Scholar 

  • Capri E, Civita M, Corniello A, Cusimano G, De Maio M, Ducci D, Fait G, Fiorucci A, Hauser S, Pisciotta A, Pranzini G, Trevisan M, Delgado Huertas A, Ferrari F, Frullini R, Nisi B, Offi M, Vaselli O, Vassallo M (2009) Assessment of nitrate contamination risk: the Italian experience. J Geochem Explor 102:71–86. https://doi.org/10.1016/j.gexplo.2009.02.006

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222. https://doi.org/10.1007/s10040-004-0404-7

    Article  Google Scholar 

  • Carvalho JM, Chaminé HI, Afonso MJ, Espinha Marques J, Medeiros A, Garcia S, Gomes A, Teixeira J, Fonseca PE (2005) Productivity and water costs in fissured-aquifers from the Iberian crystalline basement (Portugal): hydrogeological constraints. In: López-Geta JA, Pulido-Bosch A, Baquero-Úbeda JC (eds) Water, mining and environment: book homage to professor Rafael Fernández-Rubio. Instituto Geológico y Minero de España, Madrid, pp 193–207

    Google Scholar 

  • Chaminé HI, Carvalho JM, Afonso MJ, Teixeira J, Freitas L (2013) On a dialogue between hard-rock aquifer mapping and hydrogeological conceptual models: insights into groundwater exploration. Eur Geol J 35:26–31

    Google Scholar 

  • Chaminé HI, Carvalho JM, Teixeira J, Freitas L (2015) Role of hydrogeological mapping in groundwater practice: back to basics. Eur Geol J 40:34–42

    Google Scholar 

  • Cheong J-Y, Hamm S-Y, Lee J-H, Lee K-S, Woo N-C (2012) Groundwater nitrate contamination and risk assessment in an agricultural area, South Korea. Environ Earth Sci 66:1127–1136. https://doi.org/10.1007/s12665-011-1320-5

    Article  Google Scholar 

  • CLC (2018) Corine land cover. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=mapview. Accessed October 2019

  • Corniello A, Ducci D, Ruggieri G (2007) Areal identification of groundwater nitrate contamination sources in periurban areas. J Soils Sediments 7(3):159–166. https://doi.org/10.1065/jss2007.03.213

    Article  Google Scholar 

  • Diersch HJ (2013) FEFLOW: finite element modelling of flow, mass and heat transport in porous and fractured media. Springer, Berlin

    Google Scholar 

  • Doherty J (2015) Calibration and uncertainty analysis for complex environmental models. Watermark Numerical Computing, Brisbane, Australia

    Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Doreau M, Corson MS, Wiedemann SG (2012) Water use by livestock: a global perspective for a regional issue? Animal Front 2(2):9–16. https://doi.org/10.2527/af.2012-0036

    Article  Google Scholar 

  • EU – European Commission (2002) Report from the Commission. Implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Synthesis from year 2000 Member States reports. EU, Brussels, COM (2002) 407. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52002DC0407&from=EN. Accessed in October 2019

  • EU – European Commission (2018) Report from the Commission to the Council and the European Parliament. On the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2012–2015. Brussels, 4.5.2018 COM (2018) 257 final. https://ec.europa.eu/transparency/regdoc/rep/1/2018/EN/COM-2018-257-F1-EN-MAIN-PART-1.PDF. Accessed November 2019

  • Falkenmark M (2003) Water cycle and people: water for feeding humanity. Land Use Water Resour Res 3:1-4. https://doi.org/10.22004/ag.econ.47862

  • Fonseca P, Lima AS (2011) Qualidade das águas subterrâneas em zonas costeiras: caso de estudo do aquífero livre de Esposende–Vila do Conde (NW de Portugal) Groundwater quality in coastal areas: case study of the unconfined aquifer of Esposende – Vila do Conde (NW of Portugal). In: Proceedings VI Congresso Planeamento e Gestão de Zonas Costeiras dos Países de Expressão Portuguesa, Boavista Island, Cape Verde, 2011, pp 1–17

  • Freeze A, Cherry J (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Freitas L, Chaminé HI, Pereira AJSC (2019) Coupling groundwater GIS mapping and geovisualisation techniques in urban hydrogeomorphology: focus on methodology. SN Appl Sci 1:490. https://doi.org/10.1007/s42452-019-0519-z

    Article  Google Scholar 

  • Frind EO, Duynisveld WHM, Strebel O, Boettcher J (1990) Modeling of multicomponent transport with microbial transformation in groundwater: the Fuhrberg case. Water Resour Res 26(8):1707–1719. https://doi.org/10.1029/WR026i008p01707

  • Gassman P, Jha M, Wolter C, Schilling K (2015) Evaluation of alternative cropping and nutrient management systems with soil and water assessment tool for the Raccoon River watershed mater plan. Am J Environ Sci 11(4):227–244 https://doi.org/10.3844/ajessp.2015.227.244

  • Gonçalves C, Alpendurada MF (2005) Assessment of Pesticide Contamination in Soil Samples from an Intensive Horticulture Area, Using Ultrasonic Extraction and Gas Chromatography–Mass Spectrometry. Talanta 65(5):1179–89. https://doi.org/10.1016/j.talanta.2004.08.057

  • Haygarth PM, Bardgett RD, Condron LM (2013) Nitrogen and phosphorus cycles and their management. In: Gregory PJ, Nortcliff S (eds) Soil conditions and plant growth. Wiley-Blackwell, Hoboken, NJ, pp 132–158. https://doi.org/10.1002/9781118337295.ch5

    Chapter  Google Scholar 

  • Heath CR (1983) Basic ground-water hydrology. US Geol Surv Water Suppl Pap 2220. https://pubs.er.usgs.gov/djvu/WSP/wsp_2220.pdf. Accessed October 2019

  • Jiang Y, Somers G (2008) Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada. Hydrog J 17(3):707–724. https://doi.org/10.1007/s10040-008-0390-2

    Article  Google Scholar 

  • Johnes PJ (1996) Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. J Hydrol 183(3–4):323–349. https://doi.org/10.1016/0022-1694(95)02951-6

    Article  Google Scholar 

  • Kresik N, Mikszewski A (2013) Hydrogeological conceptual site models: data analysis and visualization. CRC, Boca Raton, FL

    Google Scholar 

  • Lalehzari R, Tabatabaei SH, Kholghi M (2013) Simulation of nitrate transport and wastewater seepage in groundwater flow system. Int J Environ Sci Tech 10(6):1367–1376. https://doi.org/10.1007/s13762-013-0213-4

    Article  Google Scholar 

  • Liang K, Jiang Y, Qi J, Fuller K, Nyiraneza J, Meng F-R (2020) Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada. Sci Tot Environ 729:138793. https://doi.org/10.1016/j.scitotenv.2020.138793

    Article  Google Scholar 

  • Lima AS (2000) Hidrogeologia de terrenos graníticos (Minho, Noroeste de Portugal) [Hydrogeology of granite grounds (Minho, Northwest Portugal)]. PhD Thesis, Universidade do Minho, Braga, Portugal

  • Lin YM, Tay JH, Liu Y, Hung YT (2009) Biological nitrification and denitrification processes. In: LK Wang, NC Pereira, YT Hung (eds) Biological treatment processes. Handbook of Environmental Engineering, vol 8. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-156-1_13

  • Lord I, Anthony SG (2002) Agricultural nitrogen balance and water quality in the UK. Soil Use Manag 18(4):363–369. https://doi.org/10.1111/j.1475-2743.2002.tb00253.x

    Article  Google Scholar 

  • Margalho L, Menezes R, Sousa I, Silva J (2011) Monitoring NO3 contamination of aquifer system of Bacia do Cávado/Ribeiras Costeiras. Procedia Environ Sci 7:377–382. https://doi.org/10.1016/j.proenv.2011.07.065

    Article  Google Scholar 

  • Marques da Silva MA, Lopes JP, Almeida C (1997) Produtividade de furos verticais em formações cristalinas da cidade do Porto [Productivity of vertical boreholes in crystalline formations in the city of Porto]. Geociências Rev Univ Aveiro 11(1–2):109–120

    Google Scholar 

  • Martens DA (2005) Denitrification. In: Encyclopedia of soils in the environment. Elsevier, Amsterdam, pp 378–382. https://doi.org/10.1016/B0-12-348530-4/00138-7

  • Matějů V, Čižinská S, Krejčí J, Janoch T (1992) Biological water denitrification: a review. Enzy Microb Techn 14(3):170–183. https://doi.org/10.1016/0141-0229(92)90062-S

    Article  Google Scholar 

  • Matos MF (1973) A vida rural na Apúlia [Rural life in Apulia]. Finisterra, Rev Portg Geogr 8(15):67–103. https://doi.org/10.18055/Finis2393

    Article  Google Scholar 

  • McKnight TL, Hess D (2000) Climate zones and types: the Köppen system. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Monteiro A (2005) Atlas agroclimatológico do Entre Douro e Minho [Agroclimatological atlas between Douro and Minho]. Report, Project POCTI/GEO/14260/1998. https://sigarra.up.pt/flup/pt/pub_geral.show_file?pi_doc_id=13513. Accessed in January 2020

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

  • Ongley ED (1996) Control of water pollution from agriculture. FAO Irrigation and Drainage Paper 55, FAO, Rome. http://www.fao.org/tempref/agl/AGLW/ESPIM/CD-ROM/documents/6A_e.pdf. Accessed in January 2020

  • Pedrosa MY (1999) Notícia explicativa da Carta Hidrogeológica de Portugal, à escala 1/200000 [Explanatory news of the Hydrogeological Charter of Portugal, on a scale 1/200000]. Folha 1. Instituto Geológico e Mineiro, Lisboa

  • Pedrosa MY, Brites JA, Pereira AP (2002) Carta das fontes e do risco de contaminação da região de Entre-Douro-e-Minho. Folha Norte e Folha Sul, escala 1/100000, Nota explicativa [Chart of sources and risk of contamination in the Entre-Douro-e-Minho region. Folha Norte and Folha Sul, 1/100000 scale, Explanatory note]. Instituto Geológico e Mineiro, Lisboa

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Pelletier N, Tyedmers P (2010) Forecasting potential global environmental costs of livestock production 2000–2050. PNAS 107(43):18371–18374. https://doi.org/10.1073/pnas.1004659107

    Article  Google Scholar 

  • Poeter EP, Hill MC (1997) Inverse models: a necessary next step in ground-water modeling. Ground Water 35(2):250–260. https://doi.org/10.1111/j.1745-6584.1997.tb00082.x

    Article  Google Scholar 

  • Razowska-Jaworek L, Sadurski A (2005) Nitrates in groundwater. International Association of Hydrogeologists Selected Papers SP5, Balkema, London

  • Rodríguez-Blanco ML, Arias R, Taboada-Castro MM, Nunes, JP, Keizer JJ, Taboada-Castro MT (2016) modelling the contribution of land use to nitrate yield from a rural catchment. In: Almusaed A (ed) Landscape ecology: the influences of land use and anthropogenic impacts of landscape creation. IntechOpen. https://doi.org/10.5772/63718

  • Roseiro CD (2009) Recarga artificial de aquíferos: aplicação ao sistema aquífero da Campina de Faro. PhD Thesis, Universidade de Lisboa, Lisbon

  • Sánchez R, Cuellar M (2016) Coastal interdune agroecosystems in the Mediterranean: a case study of the Andalusian Navazo. Agroecol Sustain Food Syst 40(9):895–921

    Article  Google Scholar 

  • Sidiropoulos P, Tziatzios G, Vasiliades L, Mylopoulos N, Loukas A (2019) Groundwater nitrate contamination integrated modeling for climate and water resources scenarios: the case of lake Karla over-exploited aquifer. Water 11:1201. https://doi.org/10.3390/w11061201

    Article  Google Scholar 

  • Sieczka A, Bujakowski F, Koda E (2018) Modelling groundwater flow and nitrate transport: a case study of an area used for precision agriculture in the middle part of the Vistula River valley, Poland. Geologos 24(3):225–235. https://doi.org/10.2478/logos-2018-0023

    Article  Google Scholar 

  • Silva S, Sousa J, Ramalhosa MJ, Barroso MF, Antão MC, Pina MF, Delerue-Matos C (2006) Incidence of nitrate, nitrite, chloride and phosphate in groundwater in Modivas, Portugal. In: Beleza VM (ed) Proceedings of the international water conference, IWC2006. Centro de Estudos de Águas/IDT, ISEP, Porto, Portugal, pp 557–560

  • Stigter TY, Carvalho Dill AMM, Ribeiro L (2011) Major issues regarding the efficiency of monitoring programs for nitrate contaminated groundwater. Environ Sci Technol 45:8674–8682. https://doi.org/10.1021/es201798g

    Article  Google Scholar 

  • Teixeira C, Medeiros AC (1965) Carta geológica de Portugal na escala 1:50000. Notícia explicativa da folha 9A – Póvoa de Varzim. Serviços Geológicos de Portugal, Lisboa

  • Teixeira C, Medeiros AC (1969) Carta geológica de Portugal na escala 1:50000. Notícia explicativa da folha 5C – Barcelos [Geological chart of Portugal in the 1: 50000 scale. Explanatory news sheet 5C - Barcelos]. Serviços Geológicos de Portugal, Lisboa

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Phil Trans R Soc B 365:2853–2867. https://doi.org/10.1098/rstb.2010.0134

    Article  Google Scholar 

  • Tiedeman C, Hill MC (2007) Model calibration and issues related to validation, sensitivity analysis, post-audit, uncertainty evaluation and assessment of prediction data needs. In: Groundwater. Springer, Heidelberg, pp 237–282. https://doi.org/10.1007/978-1-4020-5729-8_9

  • Wick K, Heumesser C, Schmid E (2012) Groundwater nitrate contamination: factors and indicators. J Environ Manag 111(3):178–186. https://doi.org/10.1016/j.jenvman.2012.06.030

    Article  Google Scholar 

  • Witkowski A, Kowalczyk A, Vrba J (2007) Groundwater vulnerability assessment and mapping. Selected papers SP11, International Association of Hydrogeologists (IAH), Taylor and Francis, London

    Google Scholar 

  • WWAP (World Water Assessment Programme) (2019) The United Nations world water development report 2019: leaving no one behind. WWAP, United Nations Educational, Scientific and Cultural Organization, Paris

  • Zeferino J, Carvalho MR, Ferreira T, Silva MC, Afonso MJ, Freitas L, Lopes AR, Jesus R, Batista S, Chaminé HI, Carvalho JM (2019) Forecasting and mass transport modelling of nitrates in the Esposende–Vila do Conde nitrate vulnerable zone (Portugal). In: Chaminé HI, Barbieri M, Kisi O, Chen M, Merkel B (eds) Advances in sustainable and environmental hydrology, hydrogeology, hydrochemistry and water resources. Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Advances in Science, Technology and Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham, Switzerland, pp 95–98. https://doi.org/10.1007/978-3-030-01572-5_23

Download references

Acknowledgements

This study was carried out partially under the framework of the Labcarga|ISEP re-equipment program (IPP-ISEP|PAD’2007/08) and GeoBioTec|UA (UID/GEO/04035/2020). We acknowledge the anonymous reviewers and editors for their constructive comments which helped to improve the focus of the manuscript.

Funding

The authors are grateful for the financial support of the Portuguese Environment Agency (APA) and Portuguese Foundation for Science and Technology (FCT) projects (UIDB/50019/2020 – IDL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Zeferino.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeferino, J., Carvalho, M.R., Lopes, A.R. et al. Assessment of future trends on groundwater quality in a nitrate vulnerable zone (Esposende–Vila do Conde sector, NW Portugal): towards a combined conceptual and mass transport modelling. Hydrogeol J 29, 2267–2283 (2021). https://doi.org/10.1007/s10040-021-02368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02368-2

Keywords

Navigation