Skip to main content
Log in

Synthesis and compression of correlation signals generated by pairs of qubits in CHSH scenarios

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The correlation signals generated by pairs of entangled qubits in CHSH scenarios are studied using the multi-resolution analysis (MRA). When a classical version of the MRA is applied, the correlation functions of the partially synthesized signals do not violate the CHSH inequality until the signals have been fully reconstructed. Later, we apply a variant of the MRA, inserting the detail signals in inverse order. Surprisingly, what we obtain is that the partially synthesized signals violate the CHSH inequality after the second insertion, thus revealing a nonlocal component even long before the synthesis is complete. This results in signals that are up to \(25\%\) shorter than the original ones but conserving their entangled and nonlocal character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Plbnio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7(1), 1–51 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. de Vicente, J.I.: On nonlocality as a resource theory and nonlocality measures. J. Phys. A Math. Theor. 47, 424017 (2014)

    Article  MathSciNet  Google Scholar 

  4. Brunner, N., et al.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  5. Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Non-locality and communication complexity. Rev. Mod. Phys. 82, 665 (2010)

    Article  ADS  Google Scholar 

  6. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  7. Acín, A., Gisin, N., Masanes, L.: From Bell’s Theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  8. Acín, A., Massar, S., Pironio, S.: Efficient quantum key distribution secure against no-signalling eavesdroppers. New J. Phys. 8, 126 (2006)

    Article  ADS  Google Scholar 

  9. Barrett, J., et al.: Nonlocal correlations as an information-theoretic resource. Phys. Rev. A 71, 022101 (2005)

    Article  ADS  Google Scholar 

  10. Urías, J., Méndez Martínez, J.M.: Maximally nonlocal Clauser–Horne–Shimony–Holt scenarios. Sci. Rep. 8, 7128 (2018). https://doi.org/10.1038/s41598-018-24970-3

    Article  ADS  Google Scholar 

  11. Méndez Martínez, J.M., Murguía, J.S.: Multiscale energy profile of maximally nonlocal quantum CHSH scenarios. Phys. Lett. A 402, 127377 (2021). https://doi.org/10.1016/j.physleta.2021.127377

    Article  MathSciNet  Google Scholar 

  12. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  ADS  Google Scholar 

  13. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  14. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)

    MATH  Google Scholar 

  15. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  16. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  17. Haar, A.: Zur theorie der orthogonalen funktionensysteme (on the theory of orthogonal function systems). Math. Ann. 69, 331–371 (1910)

    Article  MathSciNet  Google Scholar 

  18. Tsirel’son, B.S.: Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 36, 557–570 (1987)

    Article  Google Scholar 

  19. Khalfin, L.A., Tsirelson, B.: Quantum / classical correspondence in the light of Bell’s inequalities. Found. Phys. 22, 879–948 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yang, X.: Maximal violation of Bell Inequality for any given two-qubit pure state. Chin. Phys. Lett. 27, 120301 (2010)

    Article  Google Scholar 

  21. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  22. An-Min, W.: A simplified and obvious expression of concurrence in Wootters’ measure of entanglement of a pair of qubits. Chin. Phys. Lett. 20, 1907 (2003)

    Article  ADS  Google Scholar 

  23. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  24. Akansu, A.N., Serdijn, W.A., Selesnick, I.W.: Emerging applications of wavelets: a reviewer. Phys. Commun. 3, 1–18 (2010)

    Article  Google Scholar 

  25. Walker, J.S.: A Primer on Wavelets and Their Scientific Applications, 2nd edn. CRC, Boca Raton (2008)

    Book  Google Scholar 

  26. Li, H.S., Fan, P., Xia, H., Song, S., He, X.: The multi-level and multi-dimensional quantum wavelet packet transforms. Sci. Rep. 8, 13884 (2018)

    Article  ADS  Google Scholar 

  27. Li, H.S., Fan, P., Xia, H., Song, S.: Quantum multi-level wavelet transforms. Inf. Sci. 504, 113–135 (2019). https://doi.org/10.1016/j.ins.2019.07.057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zhou, N.R., Huang, L.X., Gong, L.H., Zeng, Q.W.: Novel quantum image compression and encryption algorithm based on DQWT and 3D hyper-chaotic Henon map. Quantum Inf. Process. 19, 284 (2020). https://doi.org/10.1007/s11128-020-02794-3

    Article  ADS  MathSciNet  Google Scholar 

  29. Hu, W.W., Zhou, R.G., Luo, J., Jiang, S.X., Luo, G.F.: Quantum image encryption algorithm based on Arnold scrambling and wavelet transforms. Quantum Inf. Process. 19, 82 (2020). https://doi.org/10.1007/s11128-020-2579-9

    Article  ADS  MathSciNet  Google Scholar 

  30. Mahmud, N., El-Araby, E.: Dimension reduction using quantum wavelet transform on a high-performance reconfigurable computer. Int. J. Reconfig. Comput. 2019, 1949121 (2019). https://doi.org/10.1155/2019/1949121

    Article  Google Scholar 

  31. Méndez, J.M., Urías, J.: On the no-signaling approach to quantum non-locality. J. Math. Phys. 56, 032101 (2015). https://doi.org/10.1063/1.4914336

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. M. M. M. thanks Ricardo Alberto Guirado López and Amaury de Jesús Pozos Guillén for the support provided to carry out this project.

Author information

Authors and Affiliations

Authors

Contributions

JMMM was involved in the conceptualization, methodology, software, formal analysis, investigation, writing and visualization. JSM was involved in the supervision.

Corresponding author

Correspondence to José Manuel Méndez Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez Martínez, J.M., Murguía, J.S. Synthesis and compression of correlation signals generated by pairs of qubits in CHSH scenarios. Quantum Inf Process 20, 208 (2021). https://doi.org/10.1007/s11128-021-03147-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03147-4

Keywords

Navigation