Skip to main content
Log in

Plasma-Chemical Synthesis of Ytterbium Doped As–S Thin Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, for the first time, the Plasma-enhanced chemical vapor deposition (PECVD) method was used for the direct one-stage synthesis of the IR-transparent amorphous chalcogenide films of the binary As–S system doped with ions of the rare-earth element—ytterbium. RF (40 MHz) inductively coupled low-temperature non-equilibrium plasma discharge was utilized for the initiation of chemical interactions between precursors. High-pure arsenic monosulfide, sulfur, and elemental ytterbium were the initial substances. The reactive species formed in the gas phase were studied in-situ by the Optical emission spectroscopy technique. It was proved that the PECVD method allows fabrication of the film in the wide range of Yb concentrations: the ytterbium content in the films was varied in the range of 1–7 at%. Dependence of structural, optical properties, and intensity of the photoluminescence on the composition of the films was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adam J-L, Zhang X (2014) Chalcogenide glasses: preparation, properties and applications. Woodhead Publishing, Sawston, p 704

    Google Scholar 

  2. Galstyan A, Messaddeq SH, Skripachev I, Galstian T, Messaddeq Y (2016) Opt Mater Express 6:230

    Article  CAS  Google Scholar 

  3. Heo J (1995) J Mater Sci Lett 14:1014

    Article  CAS  Google Scholar 

  4. Yang Z, Luo L, Chen W (2006) J Appl Phys 99:076107

    Article  Google Scholar 

  5. Machewirth DP, Wei K, Krasteva V, Datta R, Snitzer E, Sigel GH Jr (1997) J Non-Cryst Solids 213–214:295

    Article  Google Scholar 

  6. Gubanova A, Kryskov TS, Paiuk O, Laiho R, Lahderanta E, Stronski A (2009) Mold J Phys Sci 8:178

    Google Scholar 

  7. Ohishi Y, Mori A, Kanamori T, Fujiura K, Sudo S (1994) Appl Phys Lett 65:13

    Article  CAS  Google Scholar 

  8. Seddon AB, Tang Z, Furniss D, Sujecki S, Benson TM (2010) Opt Express 18:26704

    Article  Google Scholar 

  9. Krasteva V, Machewirth D, Sigel G Jr (1997) Pr3+-doped Ge–S–I glasses as candidate materials for 1.3 μm optical fiber amplifiers. J Non-Cryst Solids 213–214:304–310

    Article  Google Scholar 

  10. Payne DN, Medeiros Neto JA, Hewak DW, Laming RI, Samson BN (1994) Emission at 1.3 µm from dysprosium-doped Ga:La:S glass. Electron Lett 30(12):968–970

    Article  Google Scholar 

  11. Schweizer T, Brady DJ, West YD, Schweizer T, Bra DJ (2000) Gallium lanthanum sulphide fibers for infrared transmission. Fiber Integr Opt 19(3):229–250

    Article  CAS  Google Scholar 

  12. Galstyan A, Messaddeq SH, Skripachev I, Galstian T, Messaddeq Y (2016) Role of iodine in the solubility of Tm3+ ions in As2S3 glasses. Opt Mater Express 6(1):230–243. https://doi.org/10.1364/OME.6.000230

    Article  CAS  Google Scholar 

  13. Mochalov L et al (2019) J Phys D: Appl Phys 52:015203. https://doi.org/10.1088/1361-6463/aae577

    Article  CAS  Google Scholar 

  14. Mochalov L, Logunov A, Kornev R, Zelentsov S, Vorotyntsev A, Vorotyntsev V, Mashin A (2019) J Phys D Appl Phys 52:015203

    Article  Google Scholar 

  15. Mochalov L, Logunov A, Markin A, Kitnis A, Vorotyntsev V (2020) Opt Quantum Electron 52:197

    Article  CAS  Google Scholar 

  16. Nagels P (1998) Semiconductors 32:855

    Article  Google Scholar 

  17. Mochalov L, Logunov A, Kitnis A, Vorotyntsev V (2020) Plasma Chem Plasma Process 40:407

    Article  CAS  Google Scholar 

  18. Mochalov L, Logunov A, Vorotyntsev V (2019) Mater Res Express 6:056407

    Article  CAS  Google Scholar 

  19. Mochalov L, Logunov A, Vorotyntsev A, Vorotyntsev V, Mashin A (2018) Purif Technol 204:276

    Article  CAS  Google Scholar 

  20. Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing. Elsevier, Oxford

    Google Scholar 

  21. Vorotyntsev VM, Malyshev VM, Mochalov LA, Petukhov AN, Salnikova ME (2018) Purif Technol 199:214

    Article  CAS  Google Scholar 

  22. Almy GM, Kinzer GD (1935) The emission spectrum of diatomic arsenic. Phys Rev 47:721–730

    Article  CAS  Google Scholar 

  23. Mochalov L et al (2019) J Phys D Appl Phys 52:015203

    Article  Google Scholar 

  24. Howard LE, Andrew KL (1985) Measurement and analysis of the spectrum of neutral arsenic. J Opt Soc Am B 2:1032–1077

    Article  CAS  Google Scholar 

  25. Li H, Andrew KL (1971) First spark spectrum of arsenic. J Opt Soc Am 61:96–109. https://doi.org/10.1364/JOSA.61.000096

    Article  CAS  Google Scholar 

  26. Meggers WF, Shenstone AG, Moore CE (1950) First spectrum of arsenic. J Res Natl Bur Stand 45(4):346–365

    Article  CAS  Google Scholar 

  27. Meggers WF, Corliss CH (1966) Wavelengths, intensities, and zeeman patterns ytterbium spectra (Yb I, II, III, IV). J Res Natl Bur Stand A Phys Chem 70A(1):63

    Article  Google Scholar 

  28. Ubale SB, Bulakhe RN, Mane VJ, Malavekar DB, In I, Lokhande CD (2020) Chemical synthesis of nano-grained ytterbium sulfide thin films for supercapacitor application. Appl Nanosci 10(12):5085–5097

    Article  CAS  Google Scholar 

  29. Shpenik O, Zavilopulo A, Remeta E, Demes S, Erdevdy M (2020) Inelastic processes of electron interaction with chalogens in the gaseous phase. Ukr J Phys. https://doi.org/10.15407/ujpe65.7.557

    Article  Google Scholar 

  30. Mochalov L, Dorosz D, Kochanowicz M, Boreman G, Vorotyntsev V (2020) Spectrochim Acta A Mol Biomol Spectrosc 241:118629

    Article  CAS  Google Scholar 

  31. Iovu MS, Shutov SD, Andriesh AM, Kamitsos EI, Varsamis CPE, Furniss D, Seddon AB, Popescu M (2003) J Non-Cryst Solids 326–327:306

    Article  Google Scholar 

  32. Mochalov L, Dorosz D, Kudryashov M, Boryakov A, Mashin A (2018) Spectrochim Acta A Mol Biomol Spectrosc 193:258

    Article  CAS  Google Scholar 

  33. Bertoluzza A, Fagnano C, Monti P, Semerano G (1978) J Non-Cryst Solids 29:49

    Article  CAS  Google Scholar 

  34. Khiminets OV, Puga PP, Khiminets VV, Rosola II, Puga GD (1978) J Appl Spectrosc 28:477

    Article  Google Scholar 

  35. Golovchak R, Shpotyuk O, McCloy JS, Riley BJ, Windisch CF, Sundaram SK, Kovalskiy A, Jain H (2010) Philos Mag 90:4489

    Article  CAS  Google Scholar 

  36. Wagner T, Kasap SO, Vlcek M, Sklenár A, Stronski A (1998) J Mater Sci 33:5581

    Article  CAS  Google Scholar 

  37. Stronski AV, Paiuk OP, Strelchuk VV, Nasieka IuM, Vlček M (2014) Semicond Phys Quantum Electron Optoelectron 17(4):341

    Article  CAS  Google Scholar 

  38. Plesko EP, White WB (1994) J Solid State Chem 112:295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, Sirius University of Science and Technology, JSC Russian Railways and Educational Fund “Talent and success”, Project Number 20-38-51003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Mochalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, L.A., Kudryashov, M.A., Logunov, A.A. et al. Plasma-Chemical Synthesis of Ytterbium Doped As–S Thin Films. Plasma Chem Plasma Process 41, 1661–1670 (2021). https://doi.org/10.1007/s11090-021-10190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10190-7

Keywords

Navigation