Skip to main content

Advertisement

Log in

Composite chattering-free discrete-time sliding mode controller design for active front steering system of electric vehicles

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In order to reduce the adverse effects of internal uncertainty and external disturbance in the active front steering (AFS) system of electric vehicles, two chattering-free discrete-time sliding mode (CDSM) AFS controllers are proposed in this paper. First of all, the sideslip angle is estimated by constructing a Luenberger observer and a two-degree-of-freedom model-based parameter tuning scheme is proposed to simplify the parameter tuning. On this basis, the first-order disturbance difference is imposed on the CDSM controller to reduce the disturbance estimation error. Secondly, in order to further improve the control accuracy, a generalized proportional integral observer (GPIO) is constructed and its stability is verified by the algebraic equations. Finally, a new composite CDSM controller is obtained with the aid of GPIO to further improve the control performance. The feasibility and effectiveness of the proposed methods are verified by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Peric, S.L., Antic, D.S., Milovanovic, M.B., et al.: Quasi-sliding mode control with orthogonal endocrine neural network-based estimator applied in anti-lock braking system. IEEE/ASME Trans. Mechatron. 21(2), 754–764 (2016)

    Article  Google Scholar 

  2. Ding, S., Liu, L., Zheng, W.: Sliding sode direct yaw-moment control design for in-wheel electric vehicles. IEEE Trans. Ind. Electron. 64(8), 6752–6762 (2017)

    Article  Google Scholar 

  3. Cairano, S.D., Tseng, H.E., Bernardini, D., et al.: Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain. IEEE Trans. Control Syst. Technol. 21(4), 1236–1248 (2013)

    Article  Google Scholar 

  4. Na, X., Cole, D.J.: Application of open-loop stackelberg equilibrium to modeling a driver’s interaction with vehicle active steering control in obstacle avoidance. IEEE Trans. Hum. Mach. Syst. 5, 1–13 (2017)

    Google Scholar 

  5. Yim, S.: Coordinated control of hybrid 4WD vehicles for enhanced maneuverability and lateral stability. IEEE Trans. Veh. Technol. 61(4), 1946–1950 (2012)

    Article  Google Scholar 

  6. Eski, I., Temurlenk, A.: Design of neural network-based control systems for active steering system. Nonlinear Dyn. 73(3), 1443–1454 (2013)

    Article  MathSciNet  Google Scholar 

  7. Diao, X., Yang, J., Li, M., et al.: Composite active front steering controller design for vehicle system. IEEE Access. 5(99), 6697–6706 (2017)

    Article  Google Scholar 

  8. Ma, X., Wong, P., Zhao, J., Xie, Z.: Cornering stability control for vehicles with active front steering system using t-s fuzzy based sliding mode control strategy. Mech. Syst. Signal Process. 125(15), 347–364 (2018)

    Google Scholar 

  9. Mei, K., Ma, L., He, R., et al.: Finite-time controller design of multiple integrator nonlinear systems with input saturation. Appl. Math. Comput. 372, 124986 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Tai, T., Chen, J.: UPS inverter design using discrete-time sliding-mode control scheme. IEEE Trans. Ind. Electron. 49(1), 67–75 (2002)

    Google Scholar 

  11. Utkin, V.: Sliding mode control in discrete-time and difference systems. Lect. Notes Control Inform. Sci. 193(1), 87–107 (1994)

    Article  MATH  Google Scholar 

  12. Mei, K., Ding, S.: Second-order sliding mode controller design subject to an upper-triangular structure. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 497–507 (2021)

    Article  Google Scholar 

  13. Du, H., Yu, X., Chen, M., Li, S.: Chattering-free discrete-time sliding mode control. Automatica 68, 87–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saruchi, S.A., Zamzuri, H., Zulkarnain, N., et al.: Composite nonlinear feedback with disturbance observer for active front steering. Indonesian J. Electric. Eng. Comput. Sci. 7(2), 434–441 (2017)

    Article  Google Scholar 

  15. Ohishi, K., Nakao, M., Ohnishi, K., Miyachi, K.: Microprocessor-controlled DC motor for load-insensitive position servo system. IEEE Trans. Ind. Electron. 34(1), 44–49 (1987)

    Article  Google Scholar 

  16. Yang, J., Chen, W.H., Li, S.: Robust autopilot design of uncertain bank-to-turn missiles using state-space disturbance observers. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 226(1), 97–107 (2012)

    Article  Google Scholar 

  17. Chen, W., Ballance, D.J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  18. Xue, W., Huang, Y.: Comparison of the DOB based control, a special kind of PID control and ADRC. In: Proceedings of the American Control Conference, San Francisco, USA, pp. 4373–4379 (2011)

  19. Farouk Bouguenna, I., Azaiz, A., Tahour, A., Larbaoui, A.: Robust neuro-fuzzy sliding mode control with extended state observer for an electric drive system. Energy 169(15), 1054–1063 (2019)

    Article  Google Scholar 

  20. Li, W., Du, H., Li, W.: Four-wheel electric braking system configuration with new braking torque distribution strategy for improving energy recovery efficiency. IEEE Trans. Intell. Transp. Syst. 21(1), 87–103 (2020)

    Article  MathSciNet  Google Scholar 

  21. Yue, M., Liu, B., An, C., Sun, X.: Extended state observer-based adaptive hierarchical sliding mode control for longitudinal movement of a spherical robot. Nonlinear Dyn. 78(2), 1233–1244 (2014)

    Article  MathSciNet  Google Scholar 

  22. Liu, J., Sun, M., Chen, Z., Sun, Q.: Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dyn. 99(4), 2785–2799 (2020)

    Article  MATH  Google Scholar 

  23. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  24. Gao, Z., Huang, Y., Han, J.: An alternative paradigm for control system design. In: IEEE Conference on Decision and Control. IEEE (2002)

  25. Ren, C., Ma, S.: Generalized proportional integral observer based control of an omnidirectional mobile robot. Mechatronics 26, 36–44 (2015)

    Article  Google Scholar 

  26. Wang, J., Wang, F., Wang, G., et al.: Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances. IEEE Trans. Ind. Inf. 14(9), 4159–4168 (2018)

    Google Scholar 

  27. Morales, R., Sira-Ramirez, H., Somolinos, J.A.: Linear active disturbance rejection control of the hovercraft vessel model. Ocean Eng. 96, 100–108 (2015)

    Article  Google Scholar 

  28. Godbole, A.A., Kolhe, J.P., Talole, S.E.: Performance analysis of generalized extended state observer in tackling sinusoidal disturbances. IEEE Trans. Control Syst. Technol. 21(6), 2212–2223 (2013)

    Article  Google Scholar 

  29. Zhang, C., Zhu, J.: On frequency response analysis of GPIO. Am. Control Conf. 3944–3949, 561 (2015)

    Google Scholar 

  30. Chen, Z., Sun, M., Yang, R.: On the stability of linear active disturbance rejection control. Acta Autom. Sin. 39(5), 574–579 (2013)

    Article  MathSciNet  Google Scholar 

  31. Zheng, Q., Linda, Q., Gao, Z.: On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In: The 46th IEEE Conference on Decision and Control, pp. 3501–3506 (2007)

  32. Zhang, H., Wang, J.: Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach. IEEE Trans. Veh. Technol. 65(1), 489–494 (2016)

    Article  Google Scholar 

  33. Rajamani, R.: Vehicle Dynamics and Control. Springer, New York (2006)

    MATH  Google Scholar 

  34. Abidi, K., Xu, J., Yu, X.: On the discrete-time integral sliding-mode control. IEEE Trans. Autom. Control 52(4), 709–715 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, S., Du, H., Yu, X.: Discrete-time terminal sliding mode control systems based on Euler’s discretization. IEEE Trans. Autom. Control 59(2), 546–552 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Su, W., Drakunov, S.V., Ozguner, U.: An O(T2) boundary layer in sliding mode for sampled-data systems. IEEE Trans. Autom. Control 45(3), 482–485 (2000)

    Article  MATH  Google Scholar 

  37. Yoo, D., Yau, S., Gao, Z.: Optimal fast tracking observer bandwidth of the linear extended state observer. Int. J. Control 80(1), 102–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (61803185) and the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Ethics declarations

Conflict of interest

The authors declare that no potential conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Ma, L. Composite chattering-free discrete-time sliding mode controller design for active front steering system of electric vehicles. Nonlinear Dyn 105, 301–313 (2021). https://doi.org/10.1007/s11071-021-06465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06465-5

Keywords

Navigation