Skip to main content
Log in

Antibacterial and Acetylcholinesterase Inhibitory Potentials of Triazenes Containg Sulfonamide Moiety

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The aim of this study was to investigate the antibacterial and acetylcholinesterase (AChE) inhibitory activities of 3-(3-(2/3/4-substituted phenyl)triaz-1-en-1-yl)benzenesulfonamides (compounds 1 – 12) and to find out new possible drug candidate molecules since the available agents in clinical use have some limitations. According to the results of antibacterial screening for compounds 1 – 12, most of the synthesized compounds were found to be effective against Gram-positive microorganisms while being ineffective (MIC > 1600 μg/mL) on Gram-negative microorganisms. According to the AChE inhibition results, Ki values of compounds 1 – 12 were in the range of 5 ± 1 – 34 ± 2 nMtoward AChE. Tacrine (TAC) used as a reference drug had Ki value of 4 ± 1 nM toward AChE. The non-substituted derivative compound 1 coluld be considered as a lead compound for this study in terms of AChE inhibitory activity, since its Ki value (5 ± 1 nM) was close to that of the reference drug (TAC). Thus, compound 1 was docked at the binding site of AChE and showed good interaction with the target enzyme, suggesting their possible mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.

Similar content being viewed by others

References

  1. N. Barthelemy, F. N. Charles, A. Pantaleon, et al., J. Pharm. Res. Int., 1 – 11 (2016).

  2. R. E. Duval, M. Grare, and B. Demoré, Molecules, 24(17), 3152 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  3. L. Freire-Moran, B. Aronsson, C. Manz, et al., Drug Resist. Updates, 14(2), 118 – 124 (2011).

    Article  Google Scholar 

  4. M. Koca, K. O. Yerdelen, B. Anil, et al., J. Enzyme Inhib. Med. Chem., 31(Suppl. 2), 13 – 23 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. K. O. Yerdelen and H. I. Gul, Med. Chem. Res., 22(10), 4920 – 4929 (2013).

    Article  CAS  Google Scholar 

  6. A. Wimo, L. Jönsson, J. Bond, et al., Alzheimers Dement., 9(1), 1 – 11.e13 (2013).

  7. D. O. Ozgun, H. I. Gul, C. Yamali, et al., Bioorg. Chem., 84, 511 – 517 (2019).

    Article  Google Scholar 

  8. M. B. Colovic, D. Z. Krstic, T. D. Lazarevic-Pasti, et al., Curr. Neuropharmacol., 11(3), 315 – 335 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. A. Craig, N. S. Hong, and R. J. McDonald, Neurosci. Biobehav. Rev., 35 (6), 1397 – 1409 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. M. Goedert and M. G. Spillantini, Science, 314(5800), 777 – 781 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. I. Bezprozvanny and M. P. Mattson, Trends Neurosci., 31(9), 454 – 463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. J. Bonda, H.-G. Lee, J. A. Blair, et al., Metallomics, 3(3), 267 – 270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D. Praticò, Trends Pharmacol. Sci., 29(12), 609 – 615 (2008).

    Article  PubMed  Google Scholar 

  14. R. W. Mahley, K. H. Weisgraber and Y. Huang, Proc. Natl. Acad. Sci. USA, 103 (15), 5644 – 5651 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Huang and L. Mucke, Cell, 148(6), 1204 – 1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. H. Trepanier and N. W. Milgram, J. Alzheimers Dis., 21(4), 1089 – 1099 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. J. Hardy, N. Bogdanovic, B.Winblad, et al., J. Int. Med., 275(3), 296 – 303 (2014).

    Article  CAS  Google Scholar 

  18. A. Samadi, M. Estrada, C. Pérez, et al., Eur. J. Med. Chem., 57, 296 – 301 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. R. Cacabelos, in: Pharmacogenomics in Drug Discovery and Development, Springer (2008), pp. 213 – 357.

  20. M. Zvìøová, Clin. Biochem., 72, 3 – 6 (2019).

    Article  Google Scholar 

  21. H. I. Gul, A. Demirtas, G. Ucar, et al., Lett. Drug Des. Discov., 14(5), 573 – 580 (2017).

    Article  CAS  Google Scholar 

  22. J. Patoèka, K. Kuèa and D. Jun, Acta Medica (Hradec Kralove), 47(4), 215 – 228 (2004).

  23. D. G. Sánchez, L. H. Otero, C. M. Hernández, et al., Microbiol. Res., 167(6), 317 – 325 (2012).

    Article  PubMed  Google Scholar 

  24. P. Anand and B. Singh, Arch. Pharm. Res., 36(4), 375 – 399 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. K. Kucukoglu, H. I. Gul, P. Taslimi, et al., Bioorg. Chem., 86, 316 – 321 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. S. Bilginer, B. Gonder, H. I. Gul, et al., J. Enzyme Inhib. Med. Chem., 35(1), 325 – 329 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. F. Marchesi, M. Turriziani, G. Tortorelli, et al., Pharmacol. Res., 56(4), 275 – 287 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. N. Lolak, S. Akocak, S. Bua, et al., Bioorg. Chem.. 77, 542 – 547 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. J. A. Tucker, D. A. Allwine, K. C. Grega, et al., J. Med. Chem., 41(19), 3727 – 3735 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. V. O. Domingues, R. Hörner, L. G. Reetz, et al., J. Brazil. Chem. Soc., 21(12), 2226 – 2237 (2010).

    Article  CAS  Google Scholar 

  31. M. Hoerner, V. F. Giglio, A. J. R. Wohlmuth Alves dos Santos, et al., Rev. Brasil. Ciênc. Farmac., 44 (3), 441 – 449 (2008).

  32. N. Lolak, S. Akocak, S. Bua, and C. T. Supuran, Bioorg. Chem., 82, 117 – 122 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. T. Giraldi, T. Connors and G. Cartei, Triazenes: Chemical, Biological, and Clinical Aspects, Springer Science & Business Media (2012).

  34. A. K. Gadad, C. S. Mahajanshetti, S. Nimbalkar, and A. Raichurkar, Eur. J. Med. Chem., 35(9), 853 – 857 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. I. R. Ezabadi, C. Camoutsis, P. Zoumpoulakis, et al., Bioorg. Med. Chem., 16(3), 1150 – 1161 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. C. T. Supuran, Curr. Pharm. Des., 14(7), 641 – 648 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. V. Zubkov, T. Tsapko, I. Gritsenko, et al., Russ. Chem. Bull., 61(10), 1969 – 1974 (2012).

    Article  CAS  Google Scholar 

  38. H. I. Gul, K. Kucukoglu, C. Yamali, et al., J. Enzyme Inhib. Med. Chem., 31(4), 568 – 573 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. C. Yamali, H. I. Gul, A. Ece, et al., Chem. Biol. Drug Des., 91(4), 854 – 866 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. E. Mete, B. Comez, H. Inci Gul, et al., J. Enzyme Inhib. Med. Chem., 31(Suppl. 2), 1 – 5 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. H. I. Gul, E. Mete, S. E. Eren, et al., J. Enzyme Inhib. Med. Chem., 32(1), 169 – 175 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. N. Chandna, S. Kumar, P. Kaushik, et al., Bioorg. Med. Chem., 21(15), 4581 – 4590 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. A. Scozzafava, T. Owa, A. Mastrolorenzo and C. T. Supuran, Curr. Med. Chem., 10(11), 925 – 953 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. L. F. Castaño, V. Cuartas, A. Bernal, et al., Eur. J. Med. Chem., 176, 50 – 60 (2019).

    Article  PubMed  Google Scholar 

  45. C. Yamali, H. I. Gul, A. Ece, et al., Bioor. Chem., 92, 103222 (2019).

    Article  CAS  Google Scholar 

  46. H. I. Gul, C. Yamali, M. Bulbuller, et al., Bioorg. Chem., 78, 290 – 297 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. H. I. Gul, C. Yamali, H. Sakagami, et al., Bioorg. Chem., 77, 411 – 419 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. H. Göçer, A. Akýncýoðlu, N. Öztaþkýn, et al., Arch. Pharm., 346(11), 783 – 792 (2013).

    Article  Google Scholar 

  49. A. Alsughayer, A.-Z. A. Elassar, S. Mustafa and F. Al Sagheer, J. Biomater. Nanobiotechnol., 2(02), 143 (2011).

    Article  Google Scholar 

  50. H. Girisha, J. N. S. Chandra, S. Boppana, et al., Eur. J. Med. Chem., 44(10), 4057 – 4062 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. C. Türkeş, M. Arslan, Y. Demir, et al., Bioorg. Chem., 89, 103004 (2019).

    Article  PubMed  Google Scholar 

  52. S. Akocak, M. Boga, N. Lolak, et al., J. Turk. Chem. Soc., Section A: Chem., 6(1), 63 – 70 (2019).

  53. Wayne (PA): Clinical and Laboratory Standards Institute; 2011 Oct. Report No.: M43-A. CLSI Standards: Guidelines for Health Care Excellence.

  54. D. O. Ozgun, C. Yamali, H. I. Gul, et al., J. Enzyme Inhib. Med. Chem., 31(6), 1498 – 1501 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Ruya Kaya (Ibrahim Cecen University, Turkey) for her contributions to the AChE inhibition assay.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Bilginer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilginer, S., Gul, H.I., Hanci, H. et al. Antibacterial and Acetylcholinesterase Inhibitory Potentials of Triazenes Containg Sulfonamide Moiety. Pharm Chem J 55, 284–289 (2021). https://doi.org/10.1007/s11094-021-02412-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02412-1

Keywords

Navigation