Skip to main content
Log in

Selection of lactic acid bacteria with promising probiotic aptitudes from fruit and ability to survive in different food matrices

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are among the most prevalent microorganisms forming the autochthonous microbiota of fruit. This study aimed to select LAB isolates with probiotic aptitudes from apple, banana, grape, and orange through evaluation of in vitro safety, technological, and functional-related properties. The ability of most promising selected isolates to survive in commercial apple and orange juice, meat stew, vegetable puree, and UHT milk during 28 days of refrigeration storage was evaluated. Ninety-three isolates identified preliminarily as LAB were recovered from fruit and 66 of these isolates passed safety tests. Most of these isolates were pre-identified as belonging to Lactobacillus or Enterococcus genus based on MALDI-ToF MS profiling. These 66 isolates were categorized into three homogeneous groups based on a preliminary cluster analysis run with data from experiments to measure technological characteristics. Nine LAB isolates were selected as the most promising for probiotic use based on a principal component analysis run with data from experiments to measure probiotic-related properties. Four of these isolates were sensitive to different antibiotics and identified (16S-rRNA gene sequencing) as Lactobacillus brevis (recently reclassified as L. brevis) or Lactobacillus spp. These 4 selected isolates had high viable counts and high percentages of physiologically active cells in apple and orange juice, beef stew, vegetable puree, and UHT milk during refrigeration storage. The results showed that apple, banana, orange, and grape are potential sources of LAB with aptitudes to be exploited for a possible probiotic use and distinguished abilities to survive in different food matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO (Food and Agriculture Organization of the United Nations) (2006) Probiotics in food World Health Organization, Third Edition.https://doi.org/10.1201/9781420009613.ch16

  2. Rajoka MSR, Mehwish HM, Siddiq M, Haobin Z, Zhu J, Yan L, Shao D, Xu X, Shi J (2017) Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT Food Sci Technol 84:271–280. https://doi.org/10.1016/j.lwt.2017.05.055

    Article  CAS  Google Scholar 

  3. Ebel B, Lemetais G, Beney L, Cachon R, Sokol H, Langella P, Gervais P (2014) Impact of probiotics on risk factors for cardiovascular diseases. A review. Crit Rev Food Sci Nutr 54:175–189. https://doi.org/10.1080/10408398.2011.579361

    Article  PubMed  Google Scholar 

  4. Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E (2015) Discovering probiotic microorganisms: In vitro, in vivo, genetic and omics approaches. Front Microbiol 6:1–29. https://doi.org/10.3389/fmicb.2015.00058

    Article  Google Scholar 

  5. Rodríguez LGR, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F (20190Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina. Front Microbiol 10.https://doi.org/10.3389/fmicb.2019.01091

  6. Gregoret V, Perezlindo MJ, Vinderola G, Reinheimer J, Binetti A (2013) A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use. Food Microbiol 34:19–28. https://doi.org/10.1016/j.fm.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  7. Olvera-García M, Sanchez-Flores A, Quirasco Baruch M (2018) Genomic and functional characterization of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl Microbiol Biotechnol 102:2251–2267. https://doi.org/10.1007/s00253-018-8765-3

    Article  CAS  PubMed  Google Scholar 

  8. Panghal A, Janghu S, Virkar K, Gat Y, Kumar V, Chhikara N (2018) Potential non-dairy probiotic products – a healthy approach. Food Biosci 21:80–89. https://doi.org/10.1016/j.fbio.2017.12.003

    Article  CAS  Google Scholar 

  9. Valero-Cases E, Cerdá-Bernad D, Pastor J-J, Frutos M-J (2020) Non-dairy fermented beverages as potential carriers to ensure probiotics, prebiotics, and bioactive compounds arrival to the gut and their health benefits. Nutrients 12:1666. https://doi.org/10.3390/nu12061666

    Article  CAS  PubMed Central  Google Scholar 

  10. Perricone M, Bevilacqua A, Corbo MR, Sinigaglia M (2014) Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiol 38:26–35. https://doi.org/10.1016/j.fm.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  11. Di Cagno R, Coda R, De Angelis M, Gobbetti M (2013) Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol 33:1–10. https://doi.org/10.1016/j.fm.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  12. Garcia EF, Luciano WA, Xavier DE, da Costa WCA, Oliveira KS, Franco OL, de Morais Júnior MA, Lucena BTL, Picão RC, Magnani M, Saarela M, de Souza EL (2016) Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains. Front Microbiol 7:1–11. https://doi.org/10.3389/fmicb.2016.01371

    Article  Google Scholar 

  13. Samedi L, Charles AL (2019) Isolation and characterization of potential probiotic lactobacilli from leaves of food plants for possible additives in pellet feeding. Ann Agric Sci 64:55–62. https://doi.org/10.1016/j.aoas.2019.05.004

    Article  Google Scholar 

  14. Verón HE, Di Risio HD, Isla MI, Torres S (2017) Isolation and selection of potential probiotic lactic acid bacteria from Opuntia ficus-indica fruits that grow in Northwest Argentina. LWT Food Sci Technol 84:231–240. https://doi.org/10.1016/j.lwt.2017.05.058

    Article  CAS  Google Scholar 

  15. Corbo MR, Bevilacqua A, Speranza B, Gallo M, Campaniello D, Sinigaglia M (2017) Selection of wild lactic acid bacteria for sausages: design of a selection protocol combining statistic tools, technological and functional properties. LWT Food Sci Technol 81:144–152. https://doi.org/10.1016/j.lwt.2017.03.051

    Article  CAS  Google Scholar 

  16. Speranza B, Racioppo A, Beneduce L, Bevilacqua A, Sinigaglia M, Corbo MR (2017) Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish-based products. Food Microbiol 65:244–253. https://doi.org/10.1016/j.fm.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  17. de Albuquerque TMR, Garcia EF, Araújo AO, Magnani M, Saarela M, de Souza EL (2018) In vitro characterization of Lactobacillus strains isolated from fruit processing by-products as potential probiotics. Probiotics Antimicrob Proteins 10:704–716. https://doi.org/10.1007/s12602-017-9318-2

    Article  CAS  PubMed  Google Scholar 

  18. Chen YS, Liao YJ, Lan YS, Wu HC, Yanagida F (2017) Diversity of lactic acid bacteria associated with banana fruits in Taiwan. Curr Microbiol 74:484–490. https://doi.org/10.1007/s00284-017-1213-2

    Article  CAS  PubMed  Google Scholar 

  19. Amorim JC, Piccoli RH, Duarte WF (2018) Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Res Int 107:518–527. https://doi.org/10.1016/j.foodres.2018.02.054

    Article  CAS  PubMed  Google Scholar 

  20. American Public Health (APHA) (2015) Compendium for the microbiological examination of foods. American Public Health, Washington, DC

    Google Scholar 

  21. Santini C, Baffoni L, Gaggia F, Granata M, Gasbarri R, Di Gioia D, Biavati B (2010) Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 141:S98–S108. https://doi.org/10.1016/j.ijfoodmicro.2010.03.039

    Article  PubMed  Google Scholar 

  22. Monteagudo-Mera A, Rodríguez-Aparicio L, Rúa J, Martínez-Blanco H, Navasa N, García-Armesto MR, Ferrero MA, Ángel M (2012) In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J Funct Foods 4:531–541. https://doi.org/10.1016/j.jff.2012.02.014

    Article  CAS  Google Scholar 

  23. Domingos-Lopes MFP, Stanton C, Ross PR, Dapkevicius MLE, Silva CCG (2017) Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiol 63:178–190. https://doi.org/10.1016/j.fm.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  24. Bujnakova D, Strakova E (2017) Safety, probiotic and technological properties of lactobacilli isolated from unpasteurized ovine and caprine cheeses. Ann Microbiol 67:813–826. https://doi.org/10.1007/s13213-017-1310-2

    Article  CAS  Google Scholar 

  25. Santos KMO, Vieira ADS, do RochaNascimento CRCJCF, de Souza Lopes AC, Bruno LM, Carvalho JDG, de Melo Franco BDG, Todorov SD (2014) Brazilian artisanal cheeses as a source of beneficial Enterococcus faecium strains: characterization of the bacteriocinogenic potential. Ann Microbiol 64:1463–1471. https://doi.org/10.1007/s13213-013-0789-4

    Article  CAS  Google Scholar 

  26. Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LMT (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104:465–477. https://doi.org/10.1111/j.1365-2672.2007.03558.x

    Article  CAS  PubMed  Google Scholar 

  27. Awasti N, Tomar SK, Pophaly SD, Poonam P, Lule VK, Singh TP, Anand S (2016) Probiotic and functional characterization of bifidobacteria of Indian human origin. J Appl Microbiol 120:1021–1032. https://doi.org/10.1111/jam.13086

    Article  CAS  PubMed  Google Scholar 

  28. CLSI (Clinical and Laboratory Standards Institute) (2019) Performance standards for antimicrobial susceptibility testing. Clin Microbiol Newsl M100:49. https://doi.org/10.1016/s0196-4399(01)88009-0

    Article  Google Scholar 

  29. Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4.https://doi.org/10.1371/journal.pone.0007401

  30. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paparella A, Taccogna L, Aguzzi I, Chaves-Lopez C, Serio A, Marsilio F, Suzzi G (2008) Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Cont 19:1174–1182. https://doi.org/10.1016/j.foodcont.2008.01.002

    Article  CAS  Google Scholar 

  32. de Souza Pedrosa GT, de Souza EL, de Melo ANF, da Cruz Almeida ET, de Sousa Guedes JP, de Carvalho RJ, Pagán R, Magnani M (2020) Physiological alterations involved in inactivation of autochthonous spoilage bacteria in orange juice caused by Citrus essential oils and mild heat. Int J Food Microbiol 334:108837. https://doi.org/10.1016/j.ijfoodmicro.2020.108837

    Article  CAS  PubMed  Google Scholar 

  33. R Core Team (2019) R:a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  34. Szutowska J (2020) Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review. Eur Food Res Technol 246:357–372. https://doi.org/10.1007/s00217-019-03425-7

    Article  CAS  Google Scholar 

  35. Francesca N, Settanni L, Sannino C, Aponte M, Moschetti G (2011) Ecology and technological capability of lactic acid bacteria isolated during Grillo grape vinification in the Marsala production area. Ann Microbiol 61:79–84. https://doi.org/10.1007/s13213-010-0109-1

    Article  CAS  Google Scholar 

  36. Chandel D, Sharma M, Chawla V, Sachdeva N, Shukla G (2019) Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis. Nature Sci Rep 9:14769. https://doi.org/10.1038/s41598-019-51361-z

    Article  CAS  Google Scholar 

  37. Khanna S, Bishnoi M, Kondepudi KK, Shukla G (2020) Isolation, characterization and anti-inflammatory mechanism of probiotics in lipopolysaccharide-stimulated RAW 264.7 macrophages. World J Microbiol Biotechnol 36(5):74. https://doi.org/10.1007/s11274-020-02852-z

    Article  CAS  PubMed  Google Scholar 

  38. Španová A, Dráb V, Turková K, Špano M, Burdychová R, Šedo O, Tková DS, Rada V, Rittich B (2015) Selection of potential probiotic Lactobacillus strains of human origin for use in dairy industry. Eur Food Res Technol 7:1–9. https://doi.org/10.1007/s00217-015-2511-1

    Article  CAS  Google Scholar 

  39. Angelakis E, Million M, Henry M, Raoult D (2011) Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J Food Sci 76:568–572. https://doi.org/10.1111/j.1750-3841.2011.02369.x

    Article  CAS  Google Scholar 

  40. Barache N, Ladjouzi N, Belguesmia Y, Bendali F, Drider D (2020) Abundance of Lactobacillus plantarum strains with beneficial attributes in blackberries (Rubus sp.), fresh figs (Ficus carica), and prickly pears (Opuntia ficus-indica) grown and harvested in Algeria. Probiotics Antimicrob Prot 12:1514–1523. https://doi.org/10.1007/s12602-020-09632-z

    Article  Google Scholar 

  41. Nacef M, Chevalier M, Chollet S, Drider D, Flahaut C (2017) MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: the Maroilles. Int J Food Microbiol 247:2–8. https://doi.org/10.1016/j.ijfoodmicro.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  42. Paauw A, Jonker D, Roeselers G, Heng JME, Mars-Groenendijk RH, Trip H, Molhoek EM, Jansen HJ, Plas JV, de Jong AL, Majchrzykiewicz-Koehorst JA, Speksnijder AGCL (2015) Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry. Int J Med Microbiol 305:446–452. https://doi.org/10.1016/j.ijmm.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  43. Divisekera DMWD, Samarasekera JKRR, Hettiarachchi C, Gooneratne J, Choudhary MI, Gopalakrishnan S (2019) Isolation and identification of lactic acid bacteria with probiotic potential from fermented flour of selected banana varieties grown in Sri Lanka. J Natl Sci Found Sri Lanka 47:3–16. https://doi.org/10.4038/jnsfsr.v47i1.8922

    Article  CAS  Google Scholar 

  44. Devi SM, Aishwarya S, Halami PM (2016) Discrimination and divergence among Lactobacillus plantarum-group (LPG) isolates with reference to their probiotic functionalities from vegetable origin. Syst Appl Microbiol 39:562–570. https://doi.org/10.1016/j.syapm.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  45. Mathew S, Vijay S, Potty VP (2017) Assessment of probiotic potential of lactic acid bacteria isolated from curd and its application using fruit juice. Int J Curr Microbiol Appl Scie 6:282–289. https://doi.org/10.20546/ijcmas.2017.601.034

    Article  CAS  Google Scholar 

  46. Teixeira JS, Seeras A, Sanchez-Maldonado AF, Zhang C, Su MSW, Gänzle MG (2014) Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiol 42:172–180. https://doi.org/10.1016/j.fm.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  47. Fujimoto A, Ito K, Narushima N, Miyamoto T (2019) Identification of lactic acid bacteria and yeasts, and characterization of food components of sourdoughs used in Japanese bakeries. J Biosci Bioeng 127:575–581. https://doi.org/10.1016/j.jbiosc.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  48. Dlamini ZC, Langa RLS, Aiyegoro OA, Okoh AI (2019) Safety evaluation and colonization abilities of four lactic acid bacteria as future probiotics. Probiotics Antimicrob Proteins 11:397–402. https://doi.org/10.1007/s12602-018-9430-y

    Article  CAS  PubMed  Google Scholar 

  49. Solieri L, Bianchi A, Mottolese G, Lemmetti F, Giudici P (2014) Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiol 38:240–249. https://doi.org/10.1016/j.fm.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  50. Martorana A, Giuffrè AM, Capocasale M, Zappia C, Sidari R (2018) Sourdoughs as a source of lactic acid bacteria and yeasts with technological characteristics useful for improved bakery products. Eur Food Res Technol 244:1873–1885. https://doi.org/10.1007/s00217-018-3100-x

    Article  CAS  Google Scholar 

  51. EFSA (European Food Safety Authority) (2012) Guidance on the safety assessment of Enterococcus faecium in animal nutrition. EFSA J 10:1–10. https://doi.org/10.2903/j.efsa.2012.2682

    Article  CAS  Google Scholar 

  52. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  PubMed  Google Scholar 

  53. International Standards Organization, (ISO), International Dairy Federation (IDF) (2015) Milk and milk products - starter cultures, probiotics and fermented products - quantification of lactic acid bacteria by flow cytometry. Int Stand ISO 193442015 IDF 232: 20

  54. Wilkinson MG (2018) Flow cytometry as a potential method of measuring bacterial viability in probiotic products: a review. Trends Food Sci Technol 78:1–10. https://doi.org/10.1016/j.tifs.2018.05.006

    Article  CAS  Google Scholar 

  55. Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241. https://doi.org/10.1016/j.jff.2014.04.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) for partial funding of this research (Finance code 001) and Center for Strategic Technologies for Northeast (CETENE, Brazil) for support in identification of LAB isolates with MALDI-ToF MS.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: N.A. Rodrigues, E.F. Garcia, E.L. de Souza. Data curation; formal analysis: N.A. Rodrigues, E.F. Garcia, E.L. de Souza. Funding acquisition: E.L. de Souza. Methodology: N.A. Rodrigues, E.F. Garcia, E.L. de Souza. Project administration: E.L. de Souza. Supervision: E.F. Garcia, E.L. de Souza. Validation: N.A. Rodrigues, E.F. Garcia. Writing—original draft: N.A. Rodrigues, E.F. Garcia, E.L. de Souza. Writing—review and editing: E.L. de Souza.

Corresponding author

Correspondence to Evandro Leite de Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luis Augusto Nero

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, N.P.A., Garcia, E.F. & de Souza, E.L. Selection of lactic acid bacteria with promising probiotic aptitudes from fruit and ability to survive in different food matrices. Braz J Microbiol 52, 2257–2269 (2021). https://doi.org/10.1007/s42770-021-00543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00543-x

Keywords

Navigation