Skip to main content

Advertisement

Log in

Surface effects on nano-contact based on surface energy density

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the two-dimensional nano-contact problem with the surface effect is systematically investigated based on Chen–Yao’s surface elastic theory. The Fourier integral transform method is adopted to derive the contact stress and displacement fields of a half-space subjected to a normal triangle distribution force. The theoretical result shows that the surface energy density of the indented bulk substrate, as only one additional parameter, serves as an important factor to influence the contact properties in contrast to the classical contact models. The numerical show that only when the ratio of the contact width to the volume surface energy density to the shear modulus is equal, the difference between the theoretical prediction of surface effect and the classical contact solution without surface effect will be significant. This result indicates that when the surface effect is considered and the surface effect parameter is positive, the semi-infinite substrate will harden, which should be helpful for better understanding the size-dependent mechanisms of surface energy density at nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, T.Y., Xu, W.H.: Surface effects on nanoindentation. J. Mater. Res. 17, 1715–1720 (2002)

    Article  Google Scholar 

  2. Rar, A., Pharr, G.M., Oliver, W.C., Karapetian, E., Kalinin, S.V.: Piezoelectric nanoindentation. J. Mater. Res. 21, 552–556 (2006)

    Article  Google Scholar 

  3. Li, X., An, Y.H., Wu, Y.D., Song, Y.C., Chao, Y.J., Chien, C.H.: Microindentation test for assessing the mechanical properties of cartilaginous tissues. J. Biomed. Mater. Res. Part B Appl. Biomater. 80, 25–31 (2007)

    Article  Google Scholar 

  4. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids. 46, 411–425 (1998)

    Article  Google Scholar 

  5. Huang, Z.P., Wang, J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210 (2006)

    Article  Google Scholar 

  6. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  7. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  8. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  9. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  Google Scholar 

  10. Miller, R.E., Shenoy, V.: Size-dependent elastic properties of nanosizedstructural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  11. Park, H.S., Klein, P.A.: Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress. J. Mech. Phys. Solids 56, 3144–3166 (2008)

    Article  Google Scholar 

  12. Cammarata, R.C., Sieradzki, K., Spaepen, F.: Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films. J. Appl. Phys. 87, 1227–1234 (2000)

    Article  Google Scholar 

  13. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  14. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids. 53, 1574–1596 (2005)

    Article  MathSciNet  Google Scholar 

  15. Amir, K.M., Reza, A., Yang, F.Q.: Effect of surface stress on the deformation of an elastic half-plane containing a nano-cylindrical hole under a surface loading. J. Comput. Theor. Nanosci. 8, 1–6 (2011)

    Article  Google Scholar 

  16. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)

    Article  MathSciNet  Google Scholar 

  17. Wang, J.X., Huang, Z.P., Duan, H.L., Yu, S.W., Feng, X.Q., Wang, G.F., Zhang, W.X., Wang, T.J.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solids Sin. 24, 52–82 (2011)

    Article  Google Scholar 

  18. He, L.H., Lim, C.W.: Surface green function for a soft elastic half-space: influence of surface stress. Int. J. Solids Struct. 43, 132–143 (2006)

    Article  Google Scholar 

  19. Wang, G.F., Feng, X.Q.: Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101, 013510 (2007)

    Article  Google Scholar 

  20. Zhao, X.J., Rajapakse, R.K.N.D.: Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433–1444 (2009)

    Article  MathSciNet  Google Scholar 

  21. Lei, D.X., Wang, L.Y., Ou, Z.Y.: Elastic analysis for nanocontact problem with surface stress effects under shear load. J. Nanomater. 6, 4531–4531 (2012)

    Google Scholar 

  22. Long, J.M., Wang, G.F., Feng, X.Q., Yu, S.W.: Two-dimensional Hertzian contact problem with surface tension. Int. J. Solids Struct. 49, 131588–131594 (2012)

    Google Scholar 

  23. Long, J.M., Wang, G.F.: Effects of surface tension on axisymmetric Hertzian contact problem. Mech. Mater. 56, 65–70 (2013)

    Article  Google Scholar 

  24. Wang, L.Y.: Elastic analysis for contact problems with surface effects under normal load. Math. Mech. Solids. 22, 53–61 (2017)

    Article  MathSciNet  Google Scholar 

  25. Wang, L.Y., Wang, L.J.: Impact of surface elasticity for the contact problem on tangential triangle distribution force. Math. Mech. Solids. 22, 1494–1502 (2017)

    Article  MathSciNet  Google Scholar 

  26. Chen, S.H., Yao, Y. Elastic theory of nanomaterials based on surface-energy density. J. Appl. Mech. 81, 121002 (2014).

  27. Javili, A., Mcbride, A., Steinmann, P. Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review. Appl. Mech. Rev. 65(1), 010802 (2013).

  28. Javili, A., Steinmann, P.: On thermomechanical solids with boundary structures. Int. J. Solids Struct. 47(24), 3245–3253 (2010)

    Article  Google Scholar 

  29. Zhang, C., Yao, Y., Chen, S.H.: Size-dependent surface energy density of typically fcc metallic nanomaterials. Comput. Mater. Sci. 82, 372–377 (2014)

    Article  Google Scholar 

  30. Yao, Y., Wei, Y.C., Chen, S.H.: Size effect of the surface energy density of nanoparticles. Surf. Sci. 636, 19–24 (2015)

    Article  Google Scholar 

  31. Yao, Y., Chen, S.H.: Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials. J. Appl. Phys. 118, 139 (2015)

    Google Scholar 

  32. Yao, Y., Chen, S.H.: Buckling behavior of nanowires predicted by a new surface energy density model. Acta Mech. 227, 1799–1811 (2016)

    Article  MathSciNet  Google Scholar 

  33. Yao, Y., Chen, S.H.: Surface effect in the bending of nanowires. Mech. Mater. 100, 12–21 (2016)

    Article  Google Scholar 

  34. Jia, N., Yao, Y., Yang, Y.Z., Chen, S.H.: Size effect in the bending of a Timoshenko nanobeam. Acta Mech. 228, 2363–2375 (2017)

    Article  MathSciNet  Google Scholar 

  35. Jia, N., Yao, Y., Yang, Y.Z., Chen, S.H.: Analysis of two-dimensional contact problems considering surface effect. Int. J. Solids Struct. 125, 172–183 (2017)

    Article  Google Scholar 

  36. Zhang, X., Wang, Q.J., Wang, Y.X., Wang, Z.J., Shen, H.M., Liu, J.: Contact involving a functionally graded elastic thin film and considering surface effects. Int. J. Solids Struct. (2018). https://doi.org/10.1016/j.ijsolstr.2018.06.016

    Article  Google Scholar 

  37. Gao, X., Hao, F., Fang, D.H., Huang, Z.P.: Boussinesq problem with the surface effect and its application to contact mechanics at the nanoscale. Int. J. Solids Struct. 50, 2620–2630 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Higher Education Innovation Capacity Enhancement Project of Gansu Province (Grant No. 2020A-176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, L., Han, H. et al. Surface effects on nano-contact based on surface energy density. Arch Appl Mech 91, 4179–4190 (2021). https://doi.org/10.1007/s00419-021-02001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02001-4

Keywords

Navigation