Skip to main content
Log in

Ideal Submodules Versus Ternary Ideals Versus Linking Ideals

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We show that ideal submodules and closed ternary ideals in Hilbert modules are the same. We use this insight as a little peg on which to hang a little note about interrelations with other notions regarding Hilbert modules. In Section 3, we show that the ternary ideals (and equivalent notions) merit fully, in terms of homomorphisms and quotients, to be called ideals of (not necessarily full) Hilbert modules. The properties to be checked are intrinsically formulated for the modules (without any reference to the algebra over which they are modules) in terms of their ternary structure. The proofs, instead, are motivated from a third equivalent notion, linking ideals (Section 2), and a Theorem (Section 3) that all extends nicely to (reduced) linking algebras. As an application, in Section 4, we introduce ternary extensions of Hilbert modules and prove most of the basic properties (some new even for the known notion of extensions of Hilbert modules), by reducing their proof to the well-known analogue theorems about extensions of C–algebras. Finally, in Section 5, we propose several open problems that our method naturally suggests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abbaspour, G., Skeide, M.: Generators of dynamical systems on Hilbert modules. Commun. Stoch. Anal. 1, 193–207 (2007). arXiv:math.OA/0611097

    MathSciNet  MATH  Google Scholar 

  2. Asadi, M. B.: Stinespring’s theorem for Hilbert C–modules. J. Oper. Theory 62, 235–238 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Bakic, D., Guljas, B.: On a class of module maps of Hilbert C–modules. Math. Commun. 7, 177–192 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Bakic, D., Guljas, B.: Extensions of Hilbert C–modules II. Glas. Mat. Ser. III(38), 343–359 (2003)

    MATH  Google Scholar 

  5. Bakic, D., Guljas, B.: Extensions of Hilbert C–modules. Houst. J. Math. 30, 537–558 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Bhat, B.V.R., Skeide, M.: Pure semigroups of isometries on Hilbert C–modules. J. Funct. Anal. 269, 1539–1562 (2015). electronically Jun 2015. Preprint, arXiv:1408.2631

    Article  MathSciNet  Google Scholar 

  7. Bhat, B.V.R., Ramesh, G., Sumesh, K.: Stinespring’s theorem for maps on Hilbert C–modules. J. Oper. Theory 68, 173–178 (2012). arXiv:1001.3743v1

    MathSciNet  MATH  Google Scholar 

  8. Blackadar, B.: Operator algebras. In: Encyclopaedia of Mathematical Sciences, no. 122 (number III in the subseries Operator Algebras and Non-Commutative Geometry). Springer (2006)

  9. Blecher, D. P., Le Merdy, C.: Operator algebras and their modules—an operator space approach. In: London Mathematical Society Monographs, no. 30. Oxford University Press (2004)

  10. Blecher, D. P., Neal, M.: Open partial isometries and positivity in operator spaces. Studia Math. 128, 227–262 (2007)

    Article  MathSciNet  Google Scholar 

  11. Brown, L. G., Mingo, J. A., Shen, N. -T.: Quasi-multipliers and embeddings of Hilbert C ∗–bimodules. Can. J. Math. 46, 1150–1174 (1994)

    Article  MathSciNet  Google Scholar 

  12. Hestenes, M. R.: Relative hermitian matrices. Pac. J. Math. 11, 225–245 (1961)

    Article  MathSciNet  Google Scholar 

  13. Hestenes, M. R.: A ternary algebra with applications to matrices and linear transformations. Arch. Ration. Mech. Anal. 11, 138–194 (1962)

    Article  MathSciNet  Google Scholar 

  14. Kaad, J., Skeide, M.: Kernels of Hilbert module maps: A counterexample. Preprint, arXiv:2101.03030v1 (2021)

  15. Kasparov, G. G.: Hilbert C–modules, theorems of Stinespring & Voiculescu. J. Oper. Theory 4, 133–150 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Kolarec, B.: Introducing preorder to Hilbert C–modules. Int. J. Math. Anal. Ruse 4, 1349–1356 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Kolarec, B: Ideality in Hilbert C–modules: ideal submodules vs. ternary ideals. Glas. Mat. Ser. III(52), 289–294 (2017)

    Article  MathSciNet  Google Scholar 

  18. Lance, E.C.: Hilbert C–Modules. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  19. Murphy, G.J.: C–Algebras and Operator Theory. Academic Press (1990)

  20. Rieffel, M. A.: Induced representations of C-algebras. Adv. Math. 13, 176–257 (1974)

    Article  Google Scholar 

  21. Rieffel, M. A.: Morita equivalence for C–algebras and W–algebras. J. Pure Appl. Algebra 5, 51–96 (1974)

    Article  MathSciNet  Google Scholar 

  22. Rieffel, M. A.: Unitary representations of group extensions. Anal. Adv. Math. Suppl. Stud. 4, 43–82 (1979)

    Google Scholar 

  23. Skeide, M.: Generalized matrix C–algebras and representations of Hilbert modules. Math. Proc. R. Ir. Acad. 100A, 11–38 (2000). (Cottbus, Reihe Mathematik 1997/M-13)

    MathSciNet  MATH  Google Scholar 

  24. Skeide, M.: Hilbert modules and applications in quantum probability. Habilitationsschrift, Cottbus. Available at http://web.unimol.it/skeide/ (2001)

  25. Skeide, M.: Generalized unitaries and the Picard group. Proc. Ind. Ac. Sc. (Math Sc.) 116, 429–442 (2006). arXiv:math.OA/0511661

    Article  MathSciNet  Google Scholar 

  26. Skeide, M.: A factorization theorem for φ–maps. J. Oper. Theory 68, 543–547 (2012). arXiv:1005.1396v2

    MathSciNet  MATH  Google Scholar 

  27. Skeide, M.: Classification of E0–semigroups by product systems. Mem. Am. Math. Soc. no. 1137. American Mathematical Society, electronically Oct 2015. Preprint, arXiv:0901.1798v4 (2016)

  28. Skeide, M., Sumesh, K.: CP-H-Extendable maps between Hilbert modules and CPH-semigroups. J. Math. Anal. Appl. 414, 886–913 (2014). Electronically Jan 2014. Preprint, arXiv:1210.7491v2

    Article  MathSciNet  Google Scholar 

  29. Solel, B.: Isometries of Hilbert C–modules. Trans. Am. Math. Soc. 353, 4637–4660 (2001)

    Article  MathSciNet  Google Scholar 

  30. Takahashi, A.: Hilbert modules and their representation. Rev. Colomb. Mat. 13, 1–38 (1979)

    MathSciNet  MATH  Google Scholar 

  31. Takesaki, M.: Theory of operator algebras I. In: Encyclopaedia of Mathematical Sciences, no. 124 (number V in the subseries Operator Algebras and Non-Commutative Geometry), 2002 2nd printing of the First Edition. Springer (1979)

  32. Tomiyama, J.: On the projection of norm one in W–algebras. Proc. Jpn. Acad. 33, 608–612 (1957)

    MathSciNet  MATH  Google Scholar 

  33. Zettl, H.: A characterization of ternary rings of operators. Adv. Math. 48, 117–143 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I wish to express a big thank you to the referee of this version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Skeide.

Additional information

Presented by: Kenneth Goodearl

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skeide, M. Ideal Submodules Versus Ternary Ideals Versus Linking Ideals. Algebr Represent Theor 25, 359–386 (2022). https://doi.org/10.1007/s10468-020-10025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-020-10025-7

Keywords

Mathematics Subject Classification (2010)

Navigation