Skip to main content
Log in

An architecture supervisor scheme toward performance differentiation and optimization in cloud systems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Performance differentiation and optimization are major dimensions and critical activities in cloud computing systems with shared execution infrastructures. Supporting these features from the perspective of cloud architecture, related concerns and requirements are important challenges, which need more in-depth research. In this regard, this work investigates the dark dimensions of the problem toward realizing an integrated architecture scheme. Therefore, the main goals of the research are to investigate and analyze the operational and non-operational requirements, concerns and principles for performance differentiation and optimization in cloud systems, design a formal architecture supervisor scheme to support performance differentiation and improvement in cloud data centers, propose a conceptual meta-model for fulfilling prerequisites, work stages, design principles, required components and operational elements with essential interconnections and implement different case studies for applying the proposed scheme to executive scenarios with different operating entities and optimization policies. Empirical results present the applicability and usefulness of the proposed scheme in supporting the performance differentiation and improvement. Proposed scheme supports optimization policies and performance improvement in all implemented cases dynamically, and the related metrics have been improved. Finally, major design considerations and recommendations for moving toward other possible optimizations have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khattar N, Sidhu J, Singh J (2019) Toward energy-efficient cloud computing: a survey of dynamic power management and heuristics-based optimization techniques. J Supercomput 75(8):4750–4810. https://doi.org/10.1007/s11227-019-02764-2

    Article  Google Scholar 

  2. Ghahramani M, Zhou M, Hon CT (2017) Toward cloud computing Qos architecture: analysis of cloud systems and cloud services. IEEE/CAA J Autom Sin 4(1):5–17. https://doi.org/10.1109/JAS.2017.7510313

    Article  Google Scholar 

  3. Hwang K, Bai X, Shi Y, Li M, Chen WG, Wu Y (2016) Cloud performance modeling with benchmark evaluation of elastic scaling strategies. IEEE Trans Parallel Distrib Syst 27:130–143. https://doi.org/10.1109/TPDS.2015.2398438

    Article  Google Scholar 

  4. Kumara I, Han J, Colman A, Kapuruge M (2017) Software-defined service networking: Performance differentiation in shared multi-tenant cloud applications. IEEE Trans Serv Comput 10:9–22. https://doi.org/10.1109/TSC.2016.2594061

    Article  Google Scholar 

  5. Ferreira AM, Pernici B (2016) Managing the complex data center environment: an integrated energy-aware framework. J Comput 98:709–749. https://doi.org/10.1007/s00607-014-0405-x

    Article  MathSciNet  Google Scholar 

  6. Lakew EB, Klein C, Hernandez-Rodriguez F, Elmroth E (2015) Performance-based service differentiation in clouds. In: Proceedings of the 2015 International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 505–514. https://doi.org/10.1109/CCGrid.2015.145

  7. Wu S, Tao S, Ling X, Fan H, Jin H, Ibrahim S (2015) IShare: balancing I/O performance isolation and disk I/O efficiency in virtualized environments. Pract Exp Concurr Comput. https://doi.org/10.1002/cpe.3496

    Article  Google Scholar 

  8. Shojafar M, Cordeschi N, Baccarelli E (2016) Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Trans Cloud Comput 7:196–209. https://doi.org/10.1109/TCC.2016.2551747

    Article  Google Scholar 

  9. Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2016) Memory bandwidth management for efficient performance isolation in multi-core platforms. IEEE Trans Comput 65:562–576. https://doi.org/10.1109/TC.2015.2425889

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson P, Ullberg J, Buschle M, Franke U, Shahzad K (2014) An architecture modeling framework for probabilistic prediction. J Inf Syst e-Bus Manag 12:595–622. https://doi.org/10.1007/s10257-014-0241-8

    Article  Google Scholar 

  11. Ahn TH, Sandu A, Watson LT, Shaffer CA, Cao Y, Baumann WT (2015) A framework to analyze the performance of load balancing schemes for ensembles of stochastic simulations. Int J Parallel Prog 43:597–630. https://doi.org/10.1007/s10766-014-0309-6

    Article  Google Scholar 

  12. Joshi K, Raj A, Janakiram D (2017) Sherlock: Lightweight detection of performance interference in containerized cloud services. In: Proceedings of the 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCCSmartCityDSS), pp 522–530. https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.68

  13. Walraven S, De Borger W, Vanbrabant B, Lagaisse B, Van Landuyt D, Joosen W (2015) Adaptive performance isolation middleware for multi-tenant SaaS. In: Proceedings of the 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), pp 112–121. https://doi.org/10.1109/UCC.2015.27

  14. Oral A, Tekinerdogan B (2015) Supporting performance isolation in software as a service systems with rich clients. In: Proceedings of the 2015 IEEE international congress on big data, pp 297–304. https://doi.org/10.1109/BigData-Congress.2015.49

  15. Kim M, Han S, Cui Y, Lee H, Cho H, Hwang S (2014) CloudDMSS: robust Hadoop-based multimedia streaming service architecture for a cloud computing environment. J Clust Comput 17:1386–7857. https://doi.org/10.1007/s10586-014-0381-0

    Article  Google Scholar 

  16. Zhou X, Wang K, Jia W, Guo M (2017) Reinforcement learning-based adaptive resource management of differentiated services in geo-distributed data centers. In: Proceedings of the 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS). https://doi.org/10.1109/IWQoS.2017.7969161

  17. Arunagiri S, Kwok Y, Teller PJ, Portillo RA, Seelam SR (2014) FAIRIO: a throughput-oriented algorithm for differentiated I/O performance. Int J Parallel Prog 42:165–197. https://doi.org/10.1007/s10766-012-0217-6

    Article  Google Scholar 

  18. Fareghzadeh N, Seyyedi MA, Mohsenzadeh M (2018) Dynamic performance isolation management for cloud computing services. J Supercomput 74(1):417–455. https://doi.org/10.1007/s11227-017-2135-2

    Article  Google Scholar 

  19. Tarafdar A, Debnath M, Khatua S, Das RK (2020) Energy and quality of service-aware virtual machine consolidation in a cloud data center. J Supercomput 76:9095–9126. https://doi.org/10.1007/s11227-020-03203-3

    Article  Google Scholar 

  20. Aulkemeier F, Paramartha MA, Iacob ME, Hillegersberg J (2016) A pluggable service platform architecture for e-commerce. J Inf Syst e-bus Manag 14:469–489. https://doi.org/10.1007/s10257-015-0291-6

    Article  Google Scholar 

  21. Mazumdar S, Seybold D, Kritikos K, Verginadis Y (2019) A survey on data storage and placement methodologies for cloud-big data ecosystem. J Big Data 6(1):15. https://doi.org/10.1186/s40537-019-0178-3

    Article  Google Scholar 

  22. Maican C, Lixandroiu R (2016) A system architecture based on open source enterprise content management systems for supporting educational institutions. J Inf Manag 36:207–214. https://doi.org/10.1016/j.ijinfomgt.2015.11.003

    Article  Google Scholar 

  23. Gill S, Buyya R (2019) Resource provisioning based scheduling framework for execution of heterogeneous and clustered workloads in cloud systems: from fundamental to autonomic offering. J Grid Comput 17:385–417. https://doi.org/10.1007/s10723-017-9424-0

    Article  Google Scholar 

  24. Hu P, Dhelim S, Ning H, Qiu T (2017) Survey on fog computing: architecture, key technologies, applications and open issues. J Netw Comput Appl 98:27–42. https://doi.org/10.1016/j.jnca.2017.09.002

    Article  Google Scholar 

  25. Rosas C, Sikora A, Jorba J, Moreno A, César E (2014) Improving performance on data-intensive applications using a load balancing methodology based on divisible load theory. Int J Parallel Prog 42:94–118. https://doi.org/10.1007/s10766-012-0199-4

    Article  Google Scholar 

  26. Borgonovo E, Plischke E (2016) Sensitivity analysis: a review of recent advances. Eur J Oper Res 248(3):869–887. https://doi.org/10.1016/j.ejor.2015.06.032

    Article  MathSciNet  MATH  Google Scholar 

  27. Wiley JF, Pace LA (2015) Descriptive statistics and exploratory data analysis. In: 2015 Beginning R. Apress, Berkeley, CA, pp 73–80. https://doi.org/10.1007/978-1-4842-0373-6_8

  28. Standard Performance Evaluation Corporation: SPECjbb. http://www.spec.org/jbb2015/

  29. Dbench Workloads Generator. http://dbench.samba.org

  30. Sysbench Benchmark Tool. https://dev.mysql.com/downloads/benchmarks.html

  31. SPECweb2009. https://www.spec.org/web2009/docs/design/

  32. Xenoprofile. http://xenoprof.sourceforge.net/

  33. Linux containers (LXC). http://lxc.sourceforge.net

  34. Control groups (cgroups). http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

  35. Swingbench benchmark. http://www.dominicgiles.com/swingbench.html

  36. Oracle. http://www.oracle.com

  37. Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose CA (2013) Performance evaluation of container-based virtualization for high performance computing environments. In: Proceedings of the 2013 Parallel, Distributed and Network-Based Processing (PDP), pp 233–240. https://doi.org/10.1109/PDP.2013.41

  38. Isolation benchmark suite. http://web2.clarkson.edu/class/cs644/isolation/design.html

  39. The Transaction Processing Performance Council Benchmark. http://www.tpc.org/tpcw

  40. The Apache Software Foundation, Apache Tomcat. http://tomcat.apache.org/tomcat-7.0-doc/index.html

  41. Tang C, Hao M, Wei X, Chen W (2018) Energy-aware task scheduling in mobile cloud computing. J Distrib Parallel Databases 36:1–25. https://doi.org/10.1007/978-3-030-21373-2_50

    Article  Google Scholar 

  42. Chidambaram C (2015) A software service model using schedule based fair queue weight for dynamic admission control on cloud infrastructure. J Theor Appl Inf Technol 72(1):67–75

    MathSciNet  Google Scholar 

  43. Malik SUR, Khan SU, Ewen SJ et al (2016) Performance analysis of data intensive cloud systems based on data management and replication: a survey. J Distrib Parallel Databases 34:179–215. https://doi.org/10.1007/s10619-015-7173-2

    Article  Google Scholar 

  44. Madni SHH, Latiff MSA, Coulibaly Y, Abdulhamid S (2017) Recent advancements in resource allocation techniques for cloud computing environment: a systematic review. J Clust Comput 20:2489–2533. https://doi.org/10.1007/s10586-016-0684-4

    Article  Google Scholar 

  45. Ullah A, Li J, Shen Y, Hussain A (2018) A control theoretical view of cloud elasticity: taxonomy, survey and challenges. J Clust Comput 21:1735–1764. https://doi.org/10.1007/s10586-018-2807-6

    Article  Google Scholar 

  46. Casalicchio E, Cardellini V, Interino G, Palmirani M (2018) Research challenges in legal-rule and qos-aware cloud service brokerage. J Future Gener Comput Syst 78:211–223. https://doi.org/10.1016/j.future.2016.11.025

    Article  Google Scholar 

  47. Li S, Sun W (2020) Utility maximization for resource allocation of migrating enterprise applications into the cloud. J Enterp Inf Syst 15(4):1–33. https://doi.org/10.1080/17517575.2020.1730445

    Article  MathSciNet  Google Scholar 

  48. Fareghzadeh N, Seyyedi MA, Mohsenzadeh M (2019) Toward holistic performance management in clouds: taxonomy, challenges and opportunities. J Supercomput 75:272–313. https://doi.org/10.1007/s11227-018-2679-9

    Article  Google Scholar 

  49. Jang J, Jung J, Hong J (2020) An efficient virtual CPU scheduling in cloud computing. J Soft Comput 24:5987–5997. https://doi.org/10.1007/s00500-019-04551-w

    Article  Google Scholar 

  50. Kounev S, Lange KD, Kistowski J (2020) Performance isolation. In: Systems benchmarking. Springer, Cham. https://doi.org/10.1007/978-3-030-41705-5_16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Fareghzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fareghzadeh, N. An architecture supervisor scheme toward performance differentiation and optimization in cloud systems. J Supercomput 78, 1532–1563 (2022). https://doi.org/10.1007/s11227-021-03846-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03846-w

Keywords

Navigation