Skip to main content
Log in

Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigate the effect of the thermal imbalance on the structural stability of the magnetohydrodynamic model of the preflare current layer (Ledentsov in Solar. Phys. 296, 74, 2021). The piecewise homogeneous model of the current layer is supplemented by a magnetic field longitudinal with respect to the direction of the current. It is shown that the presence of a weak longitudinal field does not change the previously calculated spatial period of the thermal instability in the most expected range of the parameters of the preflare current layer and, moreover, contributes to the formation of the instability. On the other hand, a strong longitudinal magnetic field contributes to the spatial stabilization of the current layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Braginskii, S.I.: 1965, Transport processes in a plasma. Rev. Plasma Phys. 1, 205. ADS.

    ADS  Google Scholar 

  • Dere, K.P., Del Zanna, G., Young, P.R., Landi, E., Sutherland, R.S.: 2019, CHIANTI—An atomic database for emission lines. XV. Version 9, improvements for the X-ray satellite lines. Astrophys. J., Suppl. Ser. 241(2), 22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Field, G.B.: 1965, Thermal instability. Astrophys. J. 142, 531. DOI. ADS.

    Article  ADS  Google Scholar 

  • Frank, A., Bugrov, S., Markov, V.: 2009, Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line. Phys. Lett. A 373(16), 1460. DOI. ADS.

    Article  ADS  Google Scholar 

  • Furth, H.P., Killeen, J., Rosenbluth, M.N.: 1963, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6(4), 459. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gorbachev, V.S., Somov, B.V.: 1988, Photospheric vortex flows as a cause for two-ribbon flares - A topological model. Solar Phys. 117(1), 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gorbachev, V.S., Kelner, S.R., Somov, B.V., Shvarts, A.S.: 1988, A new topological approach to the question of the trigger for solar flares. Soviet Astron. 32, 308. ADS.

    ADS  Google Scholar 

  • Ledentsov, L.: 2021, Thermal trigger for solar flares I: Fragmentation of the preflare current layer. Solar Phys. 296(4), 74. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ledentsov, L.S., Somov, B.V.: 2015, Discontinuous plasma flows in magnetohydrodynamics and in the physics of magnetic reconnection. Phys. Usp. 58(2), 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oreshina, A.V., Oreshina, I.V., Somov, B.V.: 2012, Magnetic-topology evolution in NOAA AR 10501 on 2003 November 18. Astron. Astrophys. 538, A138. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10(4), 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: Magnetohydrodynamic processes. Living Rev. Solar Phys. 8(1), 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V.: 2012, Plasma Astrophysics. Part I: Fundamentals and Practice, 2nd edn., Astrophys. Space Sci. Library, ASSL 391. DOI. ADS.

    Book  MATH  Google Scholar 

  • Somov, B.V.: 2013, Plasma Astrophysics. Part II: Reconnection and Flares, 2nd edn., Astrophys. Space Sci. Library, ASSL 392. DOI. ADS.

    Book  MATH  Google Scholar 

  • Somov, B.V., Titov, V.S.: 1985a, Magnetic reconnection in a high temperature plasma of solar flares. Solar Phys. 95(1), 141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Titov, V.S.: 1985b, Magnetic reconnection in a high-temperature plasma of solar flares - Part two - Effects caused by transverse and longitudinal magnetic fields. Solar Phys. 102(1–2), 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Verneta, A.I.: 1993, Tearing instability of reconnecting current sheets in space plasmas. Space Sci. Rev. 65(3–4), 253. DOI. ADS.

    Article  ADS  Google Scholar 

  • Syrovatskii, S.I.: 1956, Some properties of discontinuity surfaces in magnetohydrodynamics. Tr. Fiz. Inst. Im. P.N. Lebedeva, Akad. Nauk SSSR 8, 13 [in Russian].

    Google Scholar 

  • Syrovatskii, S.I.: 1958, Magnetohydrodynamik. Fortschr. Phys. 6(9), 437. DOI. ADS.

    Article  Google Scholar 

  • Syrovatskii, S.I.: 1971, Formation of current sheets in a plasma with a frozen-in strong magnetic field. Sov. JETP 33, 933. ADS.

    ADS  Google Scholar 

  • Verneta, A.I., Somov, B.V.: 1993, Effect of compressibility on the development of tearing instability in a non-neutral current sheet in the solar atmosphere. Astron. Rep. 37(3), 282. ADS.

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Ledentsov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledentsov, L. Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field. Sol Phys 296, 93 (2021). https://doi.org/10.1007/s11207-021-01840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01840-2

Keywords

Navigation