Skip to main content
Log in

Representations of Sheffer stroke algebras and Visser algebras

  • Foundation, algebraic, and analytical methods in soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We introduce the notion of \(q^\prime \)-compactness for Sheffer stroke basic algebras and Visser algebras. Our goal is to determine when induced lattice of a Sheffer stroke basic algebra and a Visser algebra is a strongly algebraically closed algebra, and we find the condition that the lattices of complete congruences relations on a Sheffer stroke basic algebra are weakly relatively pseudocomplemented. In particular, an open question proposed by A. Di-Nola, G. Georgescu and A. Iorgulescu about the connections of dually Brouwerian pseudo-BL-algebras with other algebraic structures in Di Nola et al. (Mult Val Logic 8:717–750, 2002) is answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardeshir M (1995) Aspects of basic logic. PhD Thesis, Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee

  • Ardeshir M, Ruitenburg W (1998) Basic propositional calculus I. Math Logic Q 44(3):317–343

    Article  MathSciNet  Google Scholar 

  • Ball RN, Georgescu G, Leustean I (2002) Cauchy completions of MV-algebras. Algebra Univers 47:367–407

    Article  MathSciNet  Google Scholar 

  • Bezhanishvili G, Vosmaer J (2008) Comparison of MacNeille, canonical, and profinite Completions. Order 25:299–320

    Article  MathSciNet  Google Scholar 

  • Bezhanishvili G, Morandi PJ (2009) Profinite Heyting algebras and profinite completions of Heyting algebras. Georgian Math J 16:29–47

    Article  MathSciNet  Google Scholar 

  • Birkhoff G (1967) Lattice theory, 3rd edn. Proc. Amer. Math. Soc, Providence, R.I

  • Balbes R (1973) On free pseudo-complemented and relatively pseudo-complemented semilattices. Fundam. Math. 78:119–131

    Article  Google Scholar 

  • Crawley SP (1962) Regular embeddings which preserve lattice structure. Proc. Am. Math. Soc. 13:748–752

    Article  MathSciNet  Google Scholar 

  • Chajda I, Halas R, Kühr J (2007) Semilattice structures, Research and Exposition in Mathematics 30. Heldermann, Lemgo

    MATH  Google Scholar 

  • Chajda I, Emanovsk P (2004) Bounded lattices with antitone involutions and properties of MV-algebras. Discuss Math Gen Algebra Appl 24:32–42

    MathSciNet  Google Scholar 

  • Chajda I (2003) Lattices and semilattices having an antitone involution in every upper interval. Comment Math Univ Carolin 44:577–585

    MathSciNet  MATH  Google Scholar 

  • Chajda I, Kühr J (2013) Basic algebras, Clone Theory and Discrete Mathematics Algebra and Logic Related to Computer Science

  • Chajda I, Kolark M (2009) Independence of axiom system of basic algebras. Soft Comput 13:41–43

    Article  Google Scholar 

  • Chajda I (2005) Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium. Mathematica 44:19–23

    Google Scholar 

  • Chajda I, Kolark M (2009) Interval basic algebras. Novi Sad J Math 39:71–78

    MathSciNet  Google Scholar 

  • Chajda I (2015) Basic algebras, logics, trends and applications. Asian-Eur J Math 8:46

    MathSciNet  MATH  Google Scholar 

  • Dvurecenskij A, Pulmannova S (2000) New trends in quantum structures. Kluwer, Dordrecht

    Book  Google Scholar 

  • Dean RA, Oehmke RH (1964) Idempotent semigroups with distributive right congruence lattices. Pac J Math 14:1187–1209

    Article  MathSciNet  Google Scholar 

  • Di Nola A, Georgescu G, Iorgulescu A (2002) Pseudo-BL algebras I. Multi Valued Log 8:673–714

    MathSciNet  MATH  Google Scholar 

  • Di Nola A, Georgescu G, Iorgulescu A (2002) Pseudo-BL algebras II. Multi Valued Log 8:717–750

    MathSciNet  MATH  Google Scholar 

  • Grätzer G (2002) General lattice theory. Springer, Berlin

    MATH  Google Scholar 

  • Grätzer G (2011) Lattice theory, foundation. Birkhäuser, Basel

    Book  Google Scholar 

  • Georgescu G, Iorgulescu A (2000) Pseudo-BL algebras, a noncommutative extension of BL-algebras (Abstract). In: The fifth international conference FSTA 2000 on fuzzy sets theory and its application, February, 90–92

  • Givant S, Halmos P (2009) Introduction to Boolean algebras. Springer, Berlin

    MATH  Google Scholar 

  • Jakubyk J (2001) Strong subdirect products of MV-algebras. Math Slovaca 51:507–520

    MathSciNet  Google Scholar 

  • Johnstone PT (1982) Stone spaces. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Molkhasi A (2019) Strongly algebraically closed orthomodular near semirings. Rendiconti del Circolo Matematico di Palermo Series 2 69:803–812

    Article  MathSciNet  Google Scholar 

  • Molkhasi A, Shum KP (2019) Representation strrongly algebraically closeds. Algebra Discrete Math 1(29):130–143

    MATH  Google Scholar 

  • Molkhasi A (2016) On strongly algebraically closed lattices. J Sib Federal Univ Math Phys 9(2):202–208

    Article  MathSciNet  Google Scholar 

  • Molkhasi A (2019) On some strongly algebraically closed semirings. J Intell Fuzzy Syst 36(6):6393–6400

    Article  Google Scholar 

  • McCune W, Verof R, Fitelson B, Harris K, Feist A, Wos L (2002) Short single axioms for Boolean algebra. J Autom Reason 29:1–16

    Article  MathSciNet  Google Scholar 

  • Oner T, Senturk I (2017) The Sheffer stroke operation reducts of basic algebras. Open Math 15:926–935

    Article  MathSciNet  Google Scholar 

  • Plotkin B (2003) Algebras with the same (algebraic) geometry. Proc Steklov Inst Math 242:165–196

    MathSciNet  MATH  Google Scholar 

  • Paret D (1964) Congruence relations in semi-lattices. J Lond Math Soc 39:723–729

    MathSciNet  Google Scholar 

  • Schmid J (1978) Binomial pairs, semi-Brouwerian and Brouwerian semilattices. Notre Dame J Formal Log 19:421–434

    MathSciNet  MATH  Google Scholar 

  • Schmid J (1979) Algebraically and existentially closed distributive lattices. Zeilschr Math Logik und Crztndlagen d Math 25:525–530

    Article  MathSciNet  Google Scholar 

  • Sheffer HM (1913) A set of five independent postulates for Boolean algebras, with application to logical constants. Trans Am Math Soc 14:481–488

    Article  MathSciNet  Google Scholar 

  • Shevlyakov A (2015) Algebraic geometry over Boolean algebras in the language with constants. J Math Sci 206:724–757

    Article  Google Scholar 

  • Visser A (1981) A propositional logic with explicit fixed points. Stud Log 40:155–175

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Molkhasi.

Ethics declarations

Conflicts of interest

The author declare that there is no conflict of interests regarding the publication of this paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molkhasi, A. Representations of Sheffer stroke algebras and Visser algebras. Soft Comput 25, 8533–8538 (2021). https://doi.org/10.1007/s00500-021-05777-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05777-3

Keywords

Navigation