Skip to main content
Log in

Fracture mechanisms and failure analysis of PA6/NBR/graphene nanocomposites by essential work of fracture

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polyamide 6 (PA6) is extensively used in many industrials due to its chemical and wear resistance, stiffness, excellent strength properties, low friction, and high melting points. In this study, PA6/nitrile butadiene rubber (NBR)/graphene nanocomposites were fabricated by twin-screw extruder (TSE) and friction stir process (FSP). The novelty of our present work is that the fracture mechanisms and failure analysis of PA6/NBR/graphene nanocomposites were studied by the essential work of fracture (EWF) methodology. The scanning electron microscopy and wide X-ray diffraction were used to study the morphology of TSE and FSP samples. The results illustrated that the higher shear stress in FSP compared to the TSE is the reason for better dispersion of the graphene in the PA6 matrix and smaller size of NBR particles. The smaller size of NBR particles and better distribution of graphene in PA6/NBR blend led to high total work of fracture (\({w}_{f}\)) in the FSP sample compared to the TSE sample. The results of the EWF test showed that the addition of 0.5% (wt) graphene nanoparticles into the PA6/NBR blend in the TSE sample decreased the essential work of fracture (\({\rm{w}}_{\it{e}}\)) from 105.6 N/mm to 87.8 N/mm and increased the non-essential work of fracture (βWp) from 2.76 N/mm2 to 3.9 N/mm2; whereas in FSP sample, \({\rm{w}}_{\it{e}}\) and βWp increased to 115.58 N/mm and 4.66 N/mm2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nakhaei M, Ahmadi A, Naderi G (2020) Effect of process parameters on tensile strength of welds and modeling of laser welding of PA6/NBR/clay nanocomposite by response surface methodology. Polyolefin J 7:99–110

    CAS  Google Scholar 

  2. Paran SR, Naderi G, Ghoreishy MR (2016) Effect of halloysite nanotube on microstructure, rheological and mechanical properties of dynamically vulcanized PA6/NBR thermoplastic vulcanizates. Soft Mater 14:127–139

    Article  CAS  Google Scholar 

  3. Alidadi-Shamsabadi M, Shokoohi S (2020) Melt free-radical grafting of glycidyl methacrylate (GMA) onto EPDM backbone and effect of EPDM-g-GMA on the morphology and mechanical properties of PS/EPDM/PA6 ternary blends. Polyolefin J 8:1–9

    Google Scholar 

  4. Alidadi-Shamsabadi M, Arefazar A, Shokoohi S (2020) Response surface analysis of PS/EPDM/PA6 ternary blends: effect of mixing sequence, composition, and viscosity ratio on the mechanical properties. J Vinyl Additive Technol 26:282–290

    Article  CAS  Google Scholar 

  5. Fagundes E, Jacobi MA (2012) PA/NBR TPVs: crosslink system and properties. Polímeros 22:206–212

    Article  CAS  Google Scholar 

  6. Mahallati P, Arefazar A, Naderi G (2010) Thermoplastic elastomer nanocomposites based on PA6/NBR. Int Polym Proc 25:132–138

    Article  CAS  Google Scholar 

  7. Nakhaei M, Naderi G, Mostafapour A (2016) Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing. Iran Polym J 25:179–191

    Article  CAS  Google Scholar 

  8. Bidgoli MF, Arabgol F, Kokabi M (2020) Ablation behavior of elastomeric insulator based on nitrile rubber containing silica or silica-clay aerogels. Iran Polym J 29:985–996

    Article  CAS  Google Scholar 

  9. Taghizadeh E, Naderi G, Dubois C (2010) Rheological and morphological properties of PA6/ECO nanocomposites. Rheol Acta 49:1015–1027

    Article  CAS  Google Scholar 

  10. Paraskar P, Bari P, Mishra S (2020) Influence of amine functionalized graphene oxide on mechanical and thermal properties of epoxy matrix composites. Iran Polym J 29:47–55

    Article  CAS  Google Scholar 

  11. Solati M, Saeidi A, Ghasemi I (2019) The effect of graphene nanoplatelets on dynamic properties, crystallization, and morphology of a biodegradable blend of poly(lactic acid)/thermoplastic starch. Iran Polym J 28:649–658

    Article  CAS  Google Scholar 

  12. Zheng L, Zhen W (2018) Preparation and characterization of amidated graphene oxide and its effect on the performance of poly(lactic acid). Iran Polym J 27:239–252

    Article  CAS  Google Scholar 

  13. Khodabandelou M, Aghjeh MKR, Mazidi MM (2015) Fracture toughness and failure mechanisms in un-vulcanized and dynamically vulcanized PP/EPDM/MWCNT blend-nanocomposites. RSC Adv 5:70817–70831

    Article  CAS  Google Scholar 

  14. Haghnegahdar M, Naderi G, Ghoreishy M (2017) Fracture toughness and deformation mechanism of un-vulcanized and dynamically vulcanized polypropylene/ethylene propylene diene monomer/graphene nanocomposites. Compos Sci Technol 141:83–98

    Article  CAS  Google Scholar 

  15. Paran S, Naderi G, Ghoreishy M, Dubois C (2018) Essential work of fracture and failure mechanisms in dynamically vulcanized thermoplastic elastomer nanocomposites based on PA6/NBR/XNBR-grafted HNTs. Eng Fract Mech 200:251–262

    Article  Google Scholar 

  16. Nakhaei MR, Naderi G, Ebrahimpour A (2020) Mathematical modeling of mechanical properties of PA6/NBR/Clay nanocomposites fabrication using the thermal friction stirs processing. J Sci Technol Compos 7:833–842

    Google Scholar 

  17. Mostafapour A, Akbari A, Nakhaei M (2017) Application of response surface methodology for optimization of pulsating blank holder parameters in deep drawing process of Al 1050 rectangular parts. Int J Adv Manuf Technol 91:731–737

    Article  Google Scholar 

  18. Barmouz M, Seyfi J, Givi MKB, Hejazi I, Davachi SM (2011) A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Mater Sci Eng: A 528:3003–3006

    Article  CAS  Google Scholar 

  19. Zinati RF, Razfar M, Nazockdast H (2014) Numerical and experimental investigation of FSP of PA6/MWCNT composite. J Mater Proc Technol 214:2300–2315

    Article  CAS  Google Scholar 

  20. Nakhaei MR, Mostafapour A, Dubois C, Naderi G, Ghoreishy MHR (2018) Study of morphology and mechanical properties of PP/EPDM/clay nanocomposites prepared using twin-screw extruder and friction stir process. Polym Compos 40:3306–3314

    Article  CAS  Google Scholar 

  21. Houari T, Benguediab M, Belaziz A, Belhamiani M, Aid A (2020) Fracture toughness characterization of high-density polyethylene using essential work of Fracture Concept. J Fail Anal Prevent 20:315–322

    Article  Google Scholar 

  22. Sunil Kumar MR, Schmidova E, Konopík P, Melzer D, Bozkurt F, Londe NV (2020) Fracture toughness analysis of automotive-grade dual-phase steel using essential work of fracture (EWF) method. Metals 10:1019

    Article  Google Scholar 

  23. Mazidi MM, Aghjeh MR, Abbasi F (2012) Evaluation of fracture toughness of ABS polymers via the essential work of fracture (EWF) method. J Mater Sci 47:6375–6386

    Article  CAS  Google Scholar 

  24. Belhamiani M, Benguediab M, Oudad W (2020) Numerical analysis of polymeric thin films fracture based on energetic approach “The Essential Work of Fracture.” Period Polytechnic Mech Eng 64:1–6

    Article  Google Scholar 

  25. Yilmaz S, Yilmaz T, Kahraman B (2014) Essential work of fracture analysis of short glass fiber and/or calcite reinforced ABS/PA6 composites. Polym Eng Sci 54:540–550

    Article  CAS  Google Scholar 

  26. Lee CF, Sue HJ, Fiscus DM (2015) Effect of processing parameters on essential work of fracture toughness of LLDPE blown films. Polym Eng Sci 55:2403–2413

    Article  CAS  Google Scholar 

  27. Tarawneh MaA YuL, Tarawni MA, Ahmad SH, Al-Banawi O, Batiha MA (2015) High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J Eng 12:437–442

    Article  Google Scholar 

  28. He Q, Ye L, Kinloch AJ, Wang H, Yin B (2021) Characterisation of fusion bonding between filaments of thin 3D printed polyamide 6 using an essential work of fracture method. J Mater Sci 56:2777–2794

    Article  CAS  Google Scholar 

  29. Cuesta II, Martinez-Pañeda E, Díaz A, Alegre JM (2019) The essential work of fracture parameters for 3D printed polymer sheets. Mater Des 181:107968

    Article  CAS  Google Scholar 

  30. Rodolfo A Jr (2020) Application of fracture mechanics for the characterization of PVC pipes I Evaluation of the applicability of the EWF technique in specimens produced directly from pipes. J Vinyl Addit Technol 27:240–253

    Article  CAS  Google Scholar 

  31. Weber RP, Monteiro SN, Suarez JCM, Figueiredo ABHS, De Oliveira CJV (2017) Fracture toughness of gamma irradiated polycarbonate sheet using the essential work of fracture. Polym Test 57:115–118

    Article  CAS  Google Scholar 

  32. Na S, Spatari S, Hsuan YG (2016) Fracture characterization of recycled high density polyethylene/nanoclay composites using the essential work of fracture concept. Polym Eng Sci 56:222–232

    Article  CAS  Google Scholar 

  33. Lim S, Chow W (2011) Fracture toughness enhancement of epoxy by organo-montmorillonite. Polym-Plast Technol Eng 50:182–189

    Article  CAS  Google Scholar 

  34. Mohan T, Kumar MR, Velmurugan R (2006) Mechanical and barrier properties of epoxy polymer filled with nanolayered silicate clay particles. J Mater Sci 41:2929–2937

    Article  CAS  Google Scholar 

  35. Panda BP, Mohanty S, Nayak S (2013) Mechanical behavior and fracture toughness evaluation of multiphase polymer nanocomposites using impact and J-integral via locus method. Chin J Eng 2013:1–10

    Article  Google Scholar 

  36. Van der Wal A, Gaymans R (1999) Polypropylene–rubber blends: 3. The effect of the test speed on the fracture behaviour. Polymer 40:6045–6055

    Article  Google Scholar 

  37. Mohsenzadeh MS (2020) Fracture mechanisms and micromechanical deformation processes of polyethylene/calcium carbonate nanocomposite films. Polym Compos 41:5096–5103

    Article  CAS  Google Scholar 

  38. Khosrokhavar R, Naderi G, Bakhshandeh GR, Ghoreishy MHR (2011) Effect of processing parameters on PP/EPDM/organoclay nanocomposites using Taguchi analysis method. Iran Polym J 20:41–53

    CAS  Google Scholar 

  39. Pahlavanpour M, Moussaddy H, Ghossein E, Hubert P, Lévesque M (2013) Prediction of elastic properties in polymer–clay nanocomposites: analytical homogenization methods and 3D finite element modeling. Comput Mater Sci 79:206–215

    Article  CAS  Google Scholar 

  40. Gamez-Perez J, Muñoz P, Santana O, Gordillo A, Maspoch ML (2006) Influence of processing on ethylene propylene block copolymers (II): fracture behavior. J Appl Polym Sci 101:2714–2724

    Article  CAS  Google Scholar 

  41. Haghnegahdar M, Naderi G, Ghoreishy M (2017) Microstructure and mechanical properties of nanocomposite based on polypropylene/ethylene propylene diene monomer/graphene. Int Polym Proc 32:72–83

    Article  CAS  Google Scholar 

  42. Zebarjad S, Bagheri R, Reihani SS, Lazzeri A (2003) Deformation, yield and fracture of elastomer-modified polypropylene. J Appl Polym Sci 90:3767–3779

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Nakhaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei, M.R., Naderi, G. & Ghoreishy, M.H.R. Fracture mechanisms and failure analysis of PA6/NBR/graphene nanocomposites by essential work of fracture. Iran Polym J 30, 975–987 (2021). https://doi.org/10.1007/s13726-021-00950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00950-9

Keywords

Navigation