Skip to main content
Log in

A Study of the Effects of Graphene Nanosheets on the Thermal Conductivity of Nanofluid (Argon-Graphene) Using Reverse Nonequilibrium Molecular Dynamics Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, the reverse nonequilibrium molecular dynamics (RNEMD) method is applied to compute the thermal conductivity of nanofluid (argon-graphene) and to examine the effects of volume fraction and size of graphene nanosheets on thermal conductivity enhancement by varying the concentration graphene in liquid argon and the graphene nanosheets area, respectively. Furthermore, the thermal conductivities predicted by RNEMD method are compared with those of nanofluid (argon-metal). The results have revealed a strong dependence on volume fraction and enhanced thermal conductivity of nanofluid, in which the thermal conductivity increases when the graphene volume fraction increases. Furthermore, the results have displayed that the size of nanosheet has no significant effect on thermal conductivity enhancement of nanofluid at a low graphene nanosheet size. Additionally, it has been found that the thermal conductivity values of nanofluid (argon-graphene) are slightly higher compared to those of suspension of metallic nanoparticles in liquid argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  2. S.S. Murshed, P. Estellé, A state of the art review on viscosity of nanofluids. Renew. Sustain. Energy Rev. 76, 1134–1152 (2017)

    Article  Google Scholar 

  3. S.S. Meibodi, A. Kianifar, O. Mahian, S. Wongwises, Second law analysis of a nanofluid-based solar collector using experimental data. J. Therm. Anal. Calorim. 126, 617–625 (2016)

    Article  Google Scholar 

  4. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001)

    Article  ADS  Google Scholar 

  5. E.V. Timofeeva et al., Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E 76, 061203 (2007)

    Article  ADS  Google Scholar 

  6. S.A. Putnam, D.G. Cahill, P.V. Braun, Z. Ge, R.G. Shimmin, Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99, 084308 (2006)

    Article  ADS  Google Scholar 

  7. Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow. 21, 58–64 (2000)

    Article  Google Scholar 

  8. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed. 231, 99 (1995)

    Google Scholar 

  9. M.M. Sarafraz, F. Hormozi, Comparatively experimental study on the boiling thermal performance of metal oxide and multi-walled carbon nanotube nanofluids. Powder Technol. 287, 412–430 (2016)

    Article  Google Scholar 

  10. M. Sheikholeslami, D.D. Ganji, Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)

    Article  Google Scholar 

  11. M. Sheikholeslami, M.M. Bhatti, Active method for nanofluid heat transfer enhancement by means of EHD. Int. J. Heat Mass Transfer. 109, 115–122 (2017)

    Article  Google Scholar 

  12. S. Stankovich et al., Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  ADS  Google Scholar 

  13. S. Sen-Gupta et al., Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J. Appl. Phys. 110, 084302 (2011)

    Article  ADS  Google Scholar 

  14. W. Yu, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A. 375, 1323–1328 (2011)

    Article  ADS  Google Scholar 

  15. A. Ijam, R. Saidur, P. Ganesan, A.M. Golsheikh, Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. Int. J. Heat Mass Transfer. 87, 92–103 (2015)

    Article  Google Scholar 

  16. L. Yang, W. Ji, Z. Zhang, X. Jin, Thermal conductivity enhancement of water by adding graphene nano-sheets: consideration of particle loading and temperature effects. Int. Commun. Heat Mass Transfer 109, 104353 (2019)

    Article  Google Scholar 

  17. Ç. Demirkır, H. Ertürk, Rheological and thermal characterization of graphene-water nanofluids: Hysteresis phenomenon. Int. J. Heat Mass Transfer. 149, 119113 (2020)

    Article  Google Scholar 

  18. K. Mohammadi, A. Rajabpour, M. Ghadiri, Calibration of nonlocal strain gradient shell model for vibration analysis of a CNT conveying viscous fluid using molecular dynamics simulation. Comput. Mater. Sci. 148, 104–115 (2018)

    Article  Google Scholar 

  19. S. Berber, Y.K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613 (2000)

    Article  ADS  Google Scholar 

  20. M.H. Khadem, A.P. Wemhoff, Molecular dynamics predictions of the influence of graphite stacking arrangement on the thermal conductivity tensor. Chem. Phys. Lett. 574, 78–82 (2013)

    Article  ADS  Google Scholar 

  21. C. Hoheisel, R. Vogelsang, Thermal transport coefficients for one and two—component liquids from time correlation functions computed by molecular dynamics. J. Comput. Phys. Rep. 8, 1–70 (1988)

    Article  ADS  Google Scholar 

  22. H. Loulijat et al., The behavior of the thermal conductivity near the melting temperature of copper nanoparticle. J. Mol. Liq. 211, 695–704 (2015)

    Article  Google Scholar 

  23. E.M. Achhal et al., Modeling and simulations of nanofluids using classical molecular dynamics: particle size and temperature effects on thermal conductivity. Adv. Powder Technol. 29, 2434–2439 (2018)

    Article  Google Scholar 

  24. S.L. Lee, R. Saidur, M.F.M. Sabri, T.K. Min, Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states. Numer. Heat Transfer. Part A 68, 432–453 (2015)

    Article  ADS  Google Scholar 

  25. H. Guo, N. Zhao, Interfacial layer simulation and effect on Cu-Ar nanofluids thermal conductivity using molecular dynamics method. J. Mol. Liq. 259, 40–47 (2018)

    Article  Google Scholar 

  26. M.G. Muraleedharan, D.S. Sundaram, A. Henry, V. Yang, Thermal conductivity calculation of nano-suspensions using Green-Kubo relations with reduced artificial correlations. J. Phys.: Condens. Matter 29, 155302 (2017)

    ADS  Google Scholar 

  27. W. Cui, Z. Shen, J. Yang, S. Wu, M. Bai, Influence of nanoparticle properties on the thermal conductivity of nanofluids by molecular dynamics simulation. RSC Adv. 4, 55580 (2014)

    Article  ADS  Google Scholar 

  28. W. Cui, Z. Shen, J. Yang, S. Wu, Molecular dynamics simulation on flow behaviors of nanofluids confined in nanochannel. Case Stud. Therm. Eng. 5, 114–121 (2015)

    Article  Google Scholar 

  29. S. Sarkar, R.P. Selvam, Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J. Appl. Phys. 102, 074302 (2007)

    Article  ADS  Google Scholar 

  30. H. Loulijat, H. Zerradi, A. Dezairi, S. Ouaskit, S. Mizani, F. Rhayt, Effect of Morse potential as model of solid–solid inter-atomic interaction on the thermal conductivity of nanofluids. Adv. Powder Technol. 26, 180–187 (2015)

    Article  Google Scholar 

  31. H. Loulijat, H. Zerradi, The effect of the liquid layer around the spherical and cylindrical nanoparticles in enhancing thermal conductivity of nanofluids. J. Heat Transfer. 141, 032401 (2019)

    Article  Google Scholar 

  32. T. Khamliche et al., Laser fabrication of Cu nanoparticles based nanofluid with enhanced thermal conductivity: Experimental and molecular dynamics studies. J. Mol. Liq. 323, 114975 (2021)

    Article  Google Scholar 

  33. T. Ikeshoji, B. Hafskjold, Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol. Phys. 81, 251–261 (1994)

    Article  ADS  Google Scholar 

  34. M. Zhang et al., Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. J. Phys. Chem. B. 109, 15060–15067 (2005)

    Article  Google Scholar 

  35. H. Dong et al., Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: From bulk to nanowire silicon. Phys. Rev. B 97, 094305 (2018)

    Article  ADS  Google Scholar 

  36. P. Jund, R. Jullien, Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys. Rev. B 59, 13707 (1999)

    Article  ADS  Google Scholar 

  37. P. Wirnsberger, D. Frenkel, C. Dellago, An enhanced version of the heat exchange algorithm with excellent energy conservation properties. J. Chem. Phys. 143, 124104 (2015)

    Article  ADS  Google Scholar 

  38. A. Topal, J. Servantie, Molecular dynamics study of the thermal conductivity in nanofluids. Chem. Phys. 516, 147–151 (2019)

    Article  Google Scholar 

  39. M. Nejatolahi et al., Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids. J. Therm. Anal. Calorim. 144, 1467 (2020)

    Article  Google Scholar 

  40. J. Chen et al., Investigation of enhanced thermal properties of Cu-Ar nanofluids by reverse non equilibrium molecular dynamics method. Powder Technol. 356, 559–565 (2019)

    Article  Google Scholar 

  41. F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082–6085 (1997)

    Article  ADS  Google Scholar 

  42. S. Kuang, J.D. Gezelter, A gentler approach to RNEMD: nonisotropic velocity scaling for computing thermal conductivity and shear viscosity. J. Chem. Phys. 133, 164101 (2010)

    Article  ADS  Google Scholar 

  43. Y. Mao, Y. Zhang, Prediction of the Temperature-dependent thermal conductivity and shear viscosity for rigid water models. J. Nanotechnol. Eng. Med. 3, 031009 (2012)

    Article  Google Scholar 

  44. D. Bedrov, G.D. Smith, Thermal conductivity of molecular fluids from molecular dynamics simulations: application of a new imposed-flux method. J. Chem. Phys. 113, 8080–8084 (2000)

    Article  ADS  Google Scholar 

  45. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    Article  ADS  Google Scholar 

  46. D.W. Brenner et al., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 14, 783 (2002)

    ADS  Google Scholar 

  47. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  48. H. Loulijat, A. Koumina, H. Zerradi, The effect of the thermal vibration of graphene nanosheets on viscosity of nanofluid liquid argon containing graphene nanosheets. J. Mol. Liq. 276, 936–946 (2019)

    Article  Google Scholar 

  49. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    Article  Google Scholar 

  50. A.C. Neto et al., The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  51. C.N.R. Rao et al., Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  Google Scholar 

  52. C. Braga, K.P. Travis, A configurational temperature Nosé-Hoover thermostat. J. Chem. Phys. 123, 134101 (2005)

    Article  ADS  Google Scholar 

  53. B.L. Holian, A.F. Voter, R. Ravelo, Thermostatted molecular dynamics: how to avoid the Toda demon hidden in Nosé-Hoover dynamics. Phys. Rev. E 52, 2338 (1995)

    Article  ADS  Google Scholar 

  54. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Article  ADS  Google Scholar 

  55. N. Ahammed, L.G. Asirvatham, J. Titus, J.R. Bose, S. Wongwises, Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. Int. Commun. Heat Mass Transfer. 70, 66–74 (2016)

    Article  Google Scholar 

  56. H. Akhavan-Zanjani et al., Turbulent convective heat transfer and pressure drop of graphene–water nanofluid flowing inside a horizontal circular tube. J. Dispersion Sci. Technol. 35, 1230–1240 (2014)

    Article  Google Scholar 

  57. A.A. Balandin et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Loulijat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loulijat, H., Moustabchir, H. A Study of the Effects of Graphene Nanosheets on the Thermal Conductivity of Nanofluid (Argon-Graphene) Using Reverse Nonequilibrium Molecular Dynamics Method. Int J Thermophys 42, 125 (2021). https://doi.org/10.1007/s10765-021-02877-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02877-y

Keywords

Navigation