Skip to main content

Advertisement

Log in

Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application

  • CFM Lab 40
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Background

Cardiovascular simulations for patients with single ventricles undergoing the Fontan procedure can assess patient-specific hemodynamics, explore surgical advances, and develop personalized strategies for surgery and patient care. These simulations have not yet been broadly accepted as a routine clinical tool owing to a number of limitations. Numerous approaches have been explored to seek innovative solutions for improving methodologies and eliminating these limitations.

Purpose

This article first reviews the current state of cardiovascular simulations of Fontan hemodynamics. Then, it will discuss the technical progress of Fontan simulations with the emphasis of its clinical impact, noting that substantial improvements have been made in the considerations of patient-specific anatomy, flow, and blood rheology. The article concludes with insights into potential future directions involving clinical validation, uncertainty quantification, and computational efficiency. The advancements in these aspects could promote the clinical usage of Fontan simulations, facilitating its integration into routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

adapted from images: https://www.chop.edu/treatments/staged-reconstruction-heart-surgery.

Figure 2

adapted from Refs. 107, 108.

Similar content being viewed by others

References

  1. Babu-Narayan, S. V., G. Giannakoulas, A. M. Valente, W. Li, and M. A. Gatzoulis. Imaging of congenital heart disease in adults. Eur. Heart J. 37(15):1182–1195, 2016. https://doi.org/10.1093/eurheartj/ehv519.

    Article  PubMed  Google Scholar 

  2. Baretta, A., C. Corsini, W. Yang, I. E. Vignon-Clementel, A. L. Marsden, J. A. Feinstein, et al. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos. Trans. A 2011(369):4316–4330, 1954. https://doi.org/10.1098/rsta.2011.0130.

    Article  Google Scholar 

  3. Bazilevs, Y., M. C. Hsu, D. J. Benson, S. Sankaran, and A. L. Marsden. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput. Mech. 45(1):77–89, 2009. https://doi.org/10.1007/s00466-009-0419-y.

    Article  Google Scholar 

  4. Bertagna, L., S. Deparis, L. Formaggia, D. Forti, A. Veneziani. The LifeV library: engineering mathematics beyond the proof of concept. 2017.

  5. Bertagna, L., A. Quaini, and A. Veneziani. Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers. Int. J. Numer. Meth. Fl. 81(8):463–488, 2016. https://doi.org/10.1002/fld.4192.

    Article  CAS  Google Scholar 

  6. Bossers, S. S., M. Cibis, F. J. Gijsen, M. Schokking, J. L. Strengers, R. F. Verhaart, et al. Computational fluid dynamics in Fontan patients to evaluate power loss during simulated exercise. Heart 100(9):696–701, 2014. https://doi.org/10.1136/heartjnl-2013-304969.

    Article  PubMed  Google Scholar 

  7. Bossers, S. S., M. Cibis, L. Kapusta, W. V. Potters, M. M. Snoeren, J. J. Wentzel, et al. Long-term serial follow-up of pulmonary artery size and wall shear stress in Fontan patients. Pediatr. Cardiol. 37(4):637–645, 2016. https://doi.org/10.1007/s00246-015-1326-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Capelli, C., E. Sauvage, G. Giusti, G. M. Bosi, H. Ntsinjana, M. Carminati, et al. Patient-specific simulations for planning treatment in congenital heart disease. Interface Focus. 8(1):20170021, 2018. https://doi.org/10.1098/rsfs.2017.0021.

    Article  PubMed  Google Scholar 

  9. Cheng, A. L., N. M. Pahlevan, D. G. Rinderknecht, J. C. Wood, and M. Gharib. Experimental investigation of the effect of non-newtonian behavior of blood flow in the Fontan circulation. Eur. J. Mech. B 68:184–192, 2018. https://doi.org/10.1016/j.euromechflu.2017.12.009.

    Article  Google Scholar 

  10. Cheng, A. L., C. M. Takao, R. B. Wenby, H. J. Meiselman, J. C. Wood, and J. A. Detterich. Elevated low-shear blood viscosity is associated with decreased pulmonary blood flow in children with univentricular heart defects. Pediatr. Cardiol. 37(4):789–801, 2016. https://doi.org/10.1007/s00246-016-1352-4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung, B., and J. R. Cebral. CFD for evaluation and treatment planning of aneurysms: review of proposed clinical uses and their challenges. Ann. Biomed. Eng. 43(1):122–138, 2015. https://doi.org/10.1007/s10439-014-1093-6.

    Article  PubMed  Google Scholar 

  12. Cibis, M., K. Jarvis, M. Markl, M. Rose, C. Rigsby, A. J. Barker, et al. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: evaluation using computational fluid dynamics. J. Biomech. 48(12):2984–2989, 2015. https://doi.org/10.1016/j.jbiomech.2015.07.039.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Conover, T., A. M. Hlavacek, F. Migliavacca, E. Kung, A. Dorfman, R. S. Figliola, et al. An interactive simulation tool for patient-specific clinical decision support in single-ventricle physiology. J. Thorac. Cardiovasc. Surg. 155(2):712–721, 2018. https://doi.org/10.1016/j.jtcvs.2017.09.046.

    Article  PubMed  Google Scholar 

  14. Daniels, C. J., E. A. Bradley, M. J. Landzberg, J. Aboulhosn, R. H. Beekman, 3rd, W. Book, et al. Fontan-associated liver disease: proceedings from the american college of cardiology stakeholders meeting, october 1 to 2, 2015, Washington DC. J. Am. Coll. Cardiol. 70(25):3173–3194, 2017. https://doi.org/10.1016/j.jacc.2017.10.045.

    Article  PubMed  Google Scholar 

  15. Dasi, L. P., R. Krishnankuttyrema, H. D. Kitajima, K. Pekkan, K. S. Sundareswaran, M. Fogel, et al. Fontan hemodynamics: importance of pulmonary artery diameter. J. Thorac. Cardiovasc. Surg. 137(3):560–564, 2009. https://doi.org/10.1016/j.jtcvs.2008.04.036.

    Article  PubMed  PubMed Central  Google Scholar 

  16. de Leval, M. R., G. Dubini, F. Migliavacca, H. Jalali, G. Camporini, A. Redington, et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J. Thorac. Cardiovasc. Surg. 1996;111(3):502-13.

  17. de Zelicourt, D. A., and V. Kurtcuoglu. Patient-specific surgical planning, where do we stand? The example of the Fontan procedure. Ann. Biomed. Eng. 44(1):174–186, 2016. https://doi.org/10.1007/s10439-015-1381-9.

    Article  PubMed  Google Scholar 

  18. de Zelicourt, D. A., A. Marsden, M. A. Fogel, and A. P. Yoganathan. Imaging and patient-specific simulations for the Fontan surgery: current methodologies and clinical applications. Prog. Pediatr. Cardiol. 30(1–2):31–44, 2010. https://doi.org/10.1016/j.ppedcard.2010.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Delorme, Y. T., M. D. Rodefeld, and S. H. Frankel. Multiblock high order Large Eddy Simulation of powered Fontan hemodynamics: towards computational surgery. Comput. Fluids 143:16–31, 2017. https://doi.org/10.1016/j.compfluid.2016.10.032.

    Article  PubMed  Google Scholar 

  20. Dubini, G., M. R. de Leval, R. Pietrabissa, F. M. Montevecchi, R. Fumero. A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J. Biomech. 1996;29(1):111-21. https://doi.org/10.1016/0021-9290(95)00021-6.

  21. Esmaily Moghadam, M., Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, and A. L. Marsden. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48(3):277–291, 2011. https://doi.org/10.1007/s00466-011-0599-0.

    Article  Google Scholar 

  22. Esmaily Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244:63–79, 2013. https://doi.org/10.1016/j.jcp.2012.07.035.

    Article  Google Scholar 

  23. Esmaily-Moghadam, M., Y. Bazilevs, and A. L. Marsden. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput. Mech. 52(5):1141–1152, 2013. https://doi.org/10.1007/s00466-013-0868-1.

    Article  Google Scholar 

  24. Farahmand, M., M. N. Kavarana, P. M. Trusty, and E. O. Kung. Target flow-pressure operating range for designing a failing Fontan cavopulmonary support device. IEEE Trans. Biomed. Eng. 2020. https://doi.org/10.1109/TBME.2020.2974098.

    Article  PubMed  Google Scholar 

  25. Flores, J., J. Alastruey, and Poire E. Corvera. A novel analytical approach to pulsatile blood flow in the arterial network. Ann. Biomed. Eng. 44(10):3047–3068, 2016. https://doi.org/10.1007/s10439-016-1625-3.

    Article  PubMed  Google Scholar 

  26. Fogel, M. A., R. H. Khiabani, and A. Yoganathan. Imaging for preintervention planning: pre- and post-Fontan procedures. Circ. Cardiovasc. Imaging 6(6):1092–1101, 2013. https://doi.org/10.1161/CIRCIMAGING.113.000335.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fogel, M. A., P. M. Weinberg, A. Hoydu, A. Hubbard, J. Rychik, M. Jacobs, et al. The nature of flow in the systemic venous pathway measured by magnetic resonance blood tagging in patients having the fontan operation. J. Thorac. Cardiovasc. Surg. 114(6):1032–1041, 1997. https://doi.org/10.1016/s0022-5223(97)70017-5.

    Article  CAS  PubMed  Google Scholar 

  28. Gauthier, A., F. Saleri, and A. Veneziani. A fast preconditioner for the incompressible Navier Stokes Equations. Comput. Vis. Sci. 6(2–3):105–112, 2004. https://doi.org/10.1007/s00791-003-0114-z.

    Article  Google Scholar 

  29. Gupta, A., C. Gillett, P. Gerard, M. M. H. Cheung, J. P. Mynard, and E. Kung. Predictive models for pulmonary artery size in Fontan patients. J. Cardiovasc. Transl. Res. 2020. https://doi.org/10.1007/s12265-020-09993-4.

    Article  PubMed  Google Scholar 

  30. Haggerty, C. M., M. Restrepo, E. Tang, D. A. de Zelicourt, K. S. Sundareswaran, L. Mirabella, et al. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J. Thorac. Cardiovasc. Surg. 148(4):1481–1489, 2014. https://doi.org/10.1016/j.jtcvs.2013.11.060.

    Article  PubMed  Google Scholar 

  31. Hjortdal, V. E., T. D. Christensen, S. H. Larsen, K. Emmertsen, and E. M. Pedersen. Caval blood flow during supine exercise in normal and Fontan patients. Ann. Thorac. Surg. 85(2):599–603, 2008. https://doi.org/10.1016/j.athoracsur.2007.08.062.

    Article  PubMed  Google Scholar 

  32. Hjortdal, V. E., K. Emmertsen, E. Stenbog, T. Frund, M. R. Schmidt, O. Kromann, et al. Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 108(10):1227–1231, 2003. https://doi.org/10.1161/01.CIR.0000087406.27922.6B.

    Article  CAS  PubMed  Google Scholar 

  33. Honda, T., K. Itatani, M. Takanashi, E. Mineo, A. Kitagawa, H. Ando, et al. Quantitative evaluation of hemodynamics in the Fontan circulation: a cross-sectional study measuring energy loss in vivo. Pediatr. Cardiol. 35(2):361–367, 2014. https://doi.org/10.1007/s00246-013-0783-4.

    Article  PubMed  Google Scholar 

  34. Hsia, T. Y. Taming the Fontan with the Y-graft: a nod and a wink to the great Yu. J. Thorac. Cardiovasc. Surg. 151(6):1537–1539, 2016. https://doi.org/10.1016/j.jtcvs.2016.03.027.

    Article  PubMed  Google Scholar 

  35. Hsia, T. Y., S. Khambadkone, A. N. Redington, F. Migliavacca, J. E. Deanfield, M. R. de Leval. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation. 2000;102(19 Suppl 3):III148-53. https://doi.org/10.1161/01.cir.102.suppl_3.iii-148.

  36. Khiabani, R. H., M. Restrepo, E. Tang, D. De Zelicourt, F. Sotiropoulos, M. Fogel, et al. Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection. J. Biomech. 45(14):2376–2381, 2012. https://doi.org/10.1016/j.jbiomech.2012.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, et al. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart 101(2):139–143, 2015. https://doi.org/10.1136/heartjnl-2014-306337.

    Article  PubMed  Google Scholar 

  38. Kung, E., A. Baretta, C. Baker, G. Arbia, G. Biglino, C. Corsini, et al. Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases. J. Biomech. 46(2):423–429, 2013. https://doi.org/10.1016/j.jbiomech.2012.10.023.

    Article  PubMed  Google Scholar 

  39. Kung, E., C. Corsini, A. Marsden, I. Vignon-Clementel, G. Pennati, R. Figliola, et al. Multiscale modeling of superior cavopulmonary circulation: hemi-Fontan and bidirectional Glenn are equivalent. Semin. Thorac. Cardiovasc. Surg. 32(4):883–892, 2020. https://doi.org/10.1053/j.semtcvs.2019.09.007.

    Article  PubMed  Google Scholar 

  40. Kung, E., G. Pennati, F. Migliavacca, T. Y. Hsia, R. Figliola, A. Marsden, et al. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. J. Biomech. Eng. 2014;136(8). https://doi.org/10.1115/1.4027271.

  41. Kung, E., A. Marsden, C. Baker, A. Giardini, R. Figliola, and T. Y. Hsia. Does TCPC power loss really affect exercise capacity? Heart 101(7):575, 2015. https://doi.org/10.1136/heartjnl-2014-307379.

    Article  PubMed  Google Scholar 

  42. Kung, E., G. Pennati, F. Migliavacca, T. Y. Hsia, R. Figliola, A. Marsden, et al. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. J. Biomech. Eng. T ASME 136(8):1–13, 2014. https://doi.org/10.1115/1.4027271.

    Article  Google Scholar 

  43. Kung, E., J. C. Perry, C. Davis, F. Migliavacca, G. Pennati, A. Giardini, et al. Computational modeling of pathophysiologic responses to exercise in Fontan patients. Ann. Biomed. Eng. 43(6):1335–1347, 2015. https://doi.org/10.1007/s10439-014-1131-4.

    Article  PubMed  Google Scholar 

  44. Lagana, K., R. Balossino, F. Migliavacca, G. Pennati, E. L. Bove, M. R. de Leval, et al. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38(5):1129–1141, 2005. https://doi.org/10.1016/j.jbiomech.2004.05.027.

    Article  PubMed  Google Scholar 

  45. Lagana, K., G. Dubini, F. Migliavacca, R. Pietrabissa, G. Pennati, A. Veneziani, et al. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39(3–4):359–364, 2002.

    CAS  PubMed  Google Scholar 

  46. Liang, L., W. Mao, and W. Sun. A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta. J. Biomech. 99:2020. https://doi.org/10.1016/j.jbiomech.2019.109544.

    Article  PubMed  Google Scholar 

  47. Liang, F., H. Senzaki, C. Kurishima, K. Sughimoto, R. Inuzuka, and H. Liu. Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study. Am. J. Physiol. Heart Circ. Physiol. 307(7):H1056–H1072, 2014. https://doi.org/10.1152/ajpheart.00245.2014.

    Article  CAS  PubMed  Google Scholar 

  48. Long, C. C., M. C. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Methods Biol. 28(5):513–527, 2012. https://doi.org/10.1002/cnm.1485.

    Article  CAS  Google Scholar 

  49. Marino, B. S., M. Fogel, L. M. R. Mercer-Rosa, Z. A. W. Wei, P. M. Trusty, M. Tree, et al. Poor Fontan geometry, hemodynamics, and computational fluid dynamics are associated with worse quality of life. Circulation; 2017-11-14 00:00:002017. p. A18082-A.

  50. Marrero, V. L., J. A. Tichy, O. Sahni, and K. E. Jansen. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm. J. Biomech. Eng. Trans. ASME. 136(10):2014. https://doi.org/10.1115/1.4027488.

    Article  Google Scholar 

  51. Marsden, A.L. Multi-scale Modeling of Cardiovascular Flows. 2015.

  52. Marsden, A. L. Simulation based planning of surgical interventions in pediatric cardiology. Phys Fluids (1994). 2013;25(10):101303. https://doi.org/10.1063/1.4825031.

  53. Marsden, A. L., and M. Esmaily-Moghadam. Multiscale modeling of cardiovascular flows for clinical decision support. Appl. Mech. Rev. 67(3):1–11, 2015. https://doi.org/10.1115/1.4029909.

    Article  Google Scholar 

  54. Marsden, A. L., V. M. Reddy, S. C. Shadden, F. P. Chan, C. A. Taylor, and J. A. Feinstein. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenit. Heart. Dis. 5(2):104–117, 2010. https://doi.org/10.1111/j.1747-0803.2010.00383.x.

    Article  PubMed  Google Scholar 

  55. McClung, N., J. Glidewell, and S. L. Farr. Financial burdens and mental health needs in families of children with congenital heart disease. Congenit. Heart Dis. 13(4):554–562, 2018. https://doi.org/10.1111/chd.12605.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Migliavacca, F., G. Dubini, E. L. Bove, and M. R. de Leval. Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng-T ASME. 125(6):805–813, 2003. https://doi.org/10.1115/1.1632523.

    Article  Google Scholar 

  57. Mirabella, L., C. M. Haggerty, T. Passerini, M. Piccinelli, A. J. Powell, P. J. Del Nido, et al. Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions. Int. J. Numer. Method Biomed. Eng. 29(2):197–216, 2013. https://doi.org/10.1002/cnm.2517.

    Article  PubMed  Google Scholar 

  58. Murakami, H., N. Yoshimura, J. Kitahara, S. Otaka, F. Ichida, and T. Misaki. Collision of the caval flows caused early failure of the Fontan circulation. J. Thorac. Cardiovasc. Surg. 132(5):1235–1236, 2006. https://doi.org/10.1016/j.jtcvs.2006.08.006.

    Article  PubMed  Google Scholar 

  59. Nakamura, Y., T. Yagihara, K. Kagisaki, I. Hagino, and J. Kobayashi. Pulmonary arteriovenous malformations after a Fontan operation in the left isomerism and absent inferior vena cava. Eur. J. Cardiothorac. Surg. 36(1):69–76, 2009. https://doi.org/10.1016/j.ejcts.2009.02.046.

    Article  PubMed  Google Scholar 

  60. Nguyen, K. L., F. Han, Z. Zhou, D. Z. Brunengraber, I. Ayad, D. S. Levi, et al. 4D MUSIC CMR: value-based imaging of neonates and infants with congenital heart disease. J. Cardiovasc. Magn. Reson. 19(1):40, 2017. https://doi.org/10.1186/s12968-017-0352-8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ochiai, Y., Y. Imoto, M. Sakamoto, A. Sese, M. Tsukuda, M. Watanabe, et al. Longitudinal growth of the autologous vessels above and below the Gore-Tex graft after the extracardiac conduit Fontan procedure. Eur. J. Cardiothorac. Surg. 37(5):996–1001, 2010. https://doi.org/10.1016/j.ejcts.2009.12.010.

    Article  PubMed  Google Scholar 

  62. Ochiai, Y., Y. Imoto,M. Sakamoto, T. Kajiwara, A. Sese, M. Watanabe, et al. Mid-term follow-up of the status of Gore-Tex graft after extracardiac conduit Fontan procedure. Eur. J. Cardiothorac. Surg. 2009;36(1):63-7; discussion 7-8. https://doi.org/10.1016/j.ejcts.2009.02.013.

  63. Ovroutski, S., P. Ewert, V. Alexi-Meskishvili, K. Holscher, O. Miera, B. Peters, et al. Absence of pulmonary artery growth after Fontan operation and its possible impact on late outcome. Ann. Thorac. Surg. 87(3):826–832, 2009. https://doi.org/10.1016/j.athoracsur.2008.10.075.

    Article  PubMed  Google Scholar 

  64. Pekkan, K., D. Frakes, D. De Zelicourt, C. W. Lucas, W. J. Parks, and A. P. Yoganathan. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model. ASAIO J. 51(5):618–628, 2005. https://doi.org/10.1097/01.mat.0000176169.73987.0d.

    Article  PubMed  Google Scholar 

  65. Puelz, C., S. Acosta, B. Riviere, D. J. Penny, K. M. Brady, and C. G. Rusin. A computational study of the Fontan circulation with fenestration or hepatic vein exclusion. Comput. Biol. Med. 89:405–418, 2017. https://doi.org/10.1016/j.compbiomed.2017.08.024.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Quarteroni, A. C. A., and C. Vergara. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Method Appl. M. 302:193–252, 2016. https://doi.org/10.1016/j.cma.2016.01.007.

    Article  Google Scholar 

  67. Restrepo, M., M. Luffel, J. Sebring, K. Kanter, P. Del Nido, A. Veneziani, et al. Surgical planning of the total cavopulmonary connection: robustness analysis. Ann. Biomed. Eng. 43(6):1321–1334, 2015. https://doi.org/10.1007/s10439-014-1149-7.

    Article  PubMed  Google Scholar 

  68. Restrepo, M., L. Mirabella, E. Tang, C. M. Haggerty, R. H. Khiabani, F. Fynn-Thompson, et al. Fontan pathway growth: a quantitative evaluation of lateral tunnel and extracardiac cavopulmonary connections using serial cardiac magnetic resonance. Ann. Thorac. Surg. 97(3):916–922, 2014. https://doi.org/10.1016/j.athoracsur.2013.11.015.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Restrepo, M., E. Tang, C. M. Haggerty, R. H. Khiabani, L. Mirabella, J. Bethel, et al. Energetic implications of vessel growth and flow changes over time in Fontan patients. Ann. Thorac. Surg. 99(1):163–170, 2015. https://doi.org/10.1016/j.athoracsur.2014.08.046.

    Article  PubMed  Google Scholar 

  70. Reza, M. M. S., and A. Arzani. A critical comparison of different residence time measures in aneurysms. J. Biomech. 88:122–129, 2019. https://doi.org/10.1016/j.jbiomech.2019.03.028.

    Article  PubMed  Google Scholar 

  71. Rijnberg, F. M., M. G. Hazekamp, J. J. Wentzel, P. J. H. de Koning, J. J. M. Westenberg, M. R. M. Jongbloed, et al. Energetics of blood flow in cardiovascular disease: concept and clinical implications of adverse energetics in patients with a fontan circulation. Circulation 137(22):2393–2407, 2018. https://doi.org/10.1161/CIRCULATIONAHA.117.033359.

    Article  PubMed  Google Scholar 

  72. Roldan-Alzate, A., S. Garcia-Rodriguez, P. V. Anagnostopoulos, S. Srinivasan, O. Wieben, and C. J. Francois. Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation. J. Biomech. 48(7):1325–1330, 2015. https://doi.org/10.1016/j.jbiomech.2015.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ryu, K., T. M. Healy, A. E. Ensley, S. Sharma, C. Lucas, and A. P. Yoganathan. Importance of accurate geometry in the study of the total cavopulmonary connection: computational simulations and in vitro experiments. Ann. Biomed. Eng. 29(10):844–853, 2001. https://doi.org/10.1114/1.1408930.

    Article  CAS  PubMed  Google Scholar 

  74. Sankaran, S., and A. L. Marsden. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng. Trans. ASME. 133(3):2011. https://doi.org/10.1115/1.4003259.

    Article  Google Scholar 

  75. Schiavazzi, D. E., G. Arbia, C. Baker, A. M. Hlavacek, T. Y. Hsia, A. L. Marsden, et al. Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int. J. Numer. Methods Biomed. Eng. 32(3):2016. https://doi.org/10.1002/cnm.2737.

    Article  CAS  Google Scholar 

  76. Schiavazzi, D. E., A. Baretta, G. Pennati, T. Y. Hsia, and A. L. Marsden. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int. J. Numer. Method Biomed. Eng. 33(3):1–34, 2017. https://doi.org/10.1002/cnm.2799.

    Article  Google Scholar 

  77. Shachar, G. B., B. P. Fuhrman, Y. Wang, R. V. Lucas, Jr, and J. E. Lock. Rest and exercise hemodynamics after the Fontan procedure. Circulation 65(6):1043–1048, 1982. https://doi.org/10.1161/01.cir.65.6.1043.

    Article  CAS  PubMed  Google Scholar 

  78. Shadden, S. C., and A. Arzani. Lagrangian postprocessing of computational hemodynamics. Ann. Biomed. Eng. 43(1):41–58, 2015. https://doi.org/10.1007/s10439-014-1070-0.

    Article  PubMed  Google Scholar 

  79. Sharma, S., S. Goudy, P. Walker, S. Panchal, A. Ensley, K. Kanter, et al. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J. Am. Coll. Cardiol. 27(5):1264–1269, 1996. https://doi.org/10.1016/0735-1097(95)00598-6.

    Article  CAS  PubMed  Google Scholar 

  80. Simeone, R. M., M. E. Oster, C. H. Cassell, B. S. Armour, D. T. Gray, and M. A. Honein. Pediatric inpatient hospital resource use for congenital heart defects. Birth Defects Res. A 100(12):934–943, 2014. https://doi.org/10.1002/bdra.23262.

    Article  CAS  Google Scholar 

  81. Srivastava, D., T. Preminger, J. E. Lock, V. Mandell, J. F. Keane, J. E. Mayer, Jr, et al. Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation 92(5):1217–1222, 1995. https://doi.org/10.1161/01.cir.92.5.1217.

    Article  CAS  PubMed  Google Scholar 

  82. Sundareswaran, K. S., D. de Zelicourt, S. Sharma, K. R. Kanter, T. L. Spray, J. Rossignac, et al. Correction of pulmonary arteriovenous malformation using image-based surgical planning. JACC Cardiovasc. Imaging. 2(8):1024–1030, 2009. https://doi.org/10.1016/j.jcmg.2009.03.019.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tang, E., Z. Wei, M. A. Fogel, A. Veneziani, A. P. Yoganathan. Fluid-structure interaction simulation of an intra-atrial Fontan connection. Biology. 2020;9(12). https://doi.org/10.3390/biology9120412.

  84. Tang, E., M. Restrepo, C. M. Haggerty, L. Mirabella, J. Bethel, K. K. Whitehead, et al. Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC Cardiovasc. Imaging. 7(3):215–224, 2014. https://doi.org/10.1016/j.jcmg.2013.12.010.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tang, E., Z. A. Wei, P. M. Trusty, K. K. Whitehead, L. Mirabella, A. Veneziani, et al. The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning. J. Biomech. 82:87–95, 2019. https://doi.org/10.1016/j.jbiomech.2018.10.013.

    Article  PubMed  Google Scholar 

  86. Tang, E., Z. A. Wei, K. K. Whitehead, R. H. Khiabani, M. Restrepo, L. Mirabella, et al. Effect of Fontan geometry on exercise haemodynamics and its potential implications. Heart 103(22):1806–1812, 2017. https://doi.org/10.1136/heartjnl-2016-310855.

    Article  PubMed  Google Scholar 

  87. Tatum, G. H., G. Sigfusson, J. A. Ettedgui, J. L. Myers, S. E. Cyran, H. S. Weber, et al. Pulmonary artery growth fails to match the increase in body surface area after the Fontan operation. Heart 92(4):511–514, 2006. https://doi.org/10.1136/hrt.2005.070243.

    Article  CAS  PubMed  Google Scholar 

  88. Throckmorton, A. L., S. Lopez-Isaza, and W. Moskowitz. Dual-pump support in the inferior and superior vena cavae of a patient-specific fontan physiology. Artif. Organs 37(6):513–522, 2013. https://doi.org/10.1111/aor.12039.

    Article  PubMed  Google Scholar 

  89. Tree, M., Z. A. Wei, B. Munz, K. Maher, S. Deshpande, T. Slesnick, et al. A method for in vitro TCPC compliance verification. J. Biomech. Eng. Trans. ASME. 2017;139(6):064502-. https://doi.org/10.1115/1.4036474.

  90. Tree, M., Z. A. Wei, P. M. Trusty, V. Raghav, M. Fogel, K. Maher, et al. Using a novel in vitro fontan model and condition-specific real-time MRI data to examine hemodynamic effects of respiration and exercise. Ann. Biomed. Eng. 46(1):135–147, 2018. https://doi.org/10.1007/s10439-017-1943-0.

    Article  PubMed  Google Scholar 

  91. Trusty, P. M., Z. Alan Wei, M. A. Fogel, K. Maher, S. R. Deshpande, and A. P. Yoganathan. Computational modeling of a right-sided Fontan assist device: effectiveness across patient anatomies and cannulations. J. Biomech. 109:2020. https://doi.org/10.1016/j.jbiomech.2020.109917.

    Article  PubMed  Google Scholar 

  92. Trusty, P. M., T. C. Slesnick, Z. A. Wei, J. Rossignac, K. R. Kanter, M. A. Fogel, et al. Fontan surgical planning: previous accomplishments, current challenges, and future directions. J. Cardiovasc. Transl. Res. 11(2):133–144, 2018. https://doi.org/10.1007/s12265-018-9786-0.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Trusty, P. M., Z. A. Wei, J. Rychik, A. Graham, P. A. Russo, L. F. Surrey, et al. Cardiac magnetic resonance-derived metrics are predictive of liver fibrosis in fontan patients. Ann. Thorac. Surg. 109(6):1904–1911, 2020. https://doi.org/10.1016/j.athoracsur.2019.09.070.

    Article  PubMed  Google Scholar 

  94. Trusty, P. M., Z. Wei, J. Rychik, P. A. Russo, L. F. Surrey, D. J. Goldberg, et al. Impact of hemodynamics and fluid energetics on liver fibrosis after Fontan operation. J Thorac Cardiov Sur. 156(1):267–275, 2018. https://doi.org/10.1016/j.jtcvs.2018.02.078.

    Article  Google Scholar 

  95. Trusty, P. M., Z. Wei, M. Sales, K. R. Kanter, M. A. Fogel, A. P. Yoganathan, et al. Y-graft modification to the Fontan procedure: Increasingly balanced flow over time. J. Thorac. Cardiovasc. Surg. 159(2):652–661, 2020. https://doi.org/10.1016/j.jtcvs.2019.06.063.

    Article  PubMed  Google Scholar 

  96. Trusty, P. M., Z. A. Wei, T. C. Slesnick, K. R. Kanter, T. L. Spray, M. A. Fogel, et al. The first cohort of prospective Fontan surgical planning patients with follow-up data: how accurate is surgical planning? J. Thorac. Cardiovasc. Surg. 157(3):1146–1155, 2019. https://doi.org/10.1016/j.jtcvs.2018.11.102.

    Article  PubMed  Google Scholar 

  97. Trusty, P. M., Z. Wei, M. Tree, K. R. Kanter, M. A. Fogel, A. P. Yoganathan, et al. Local hemodynamic differences between commercially available Y-grafts and traditional Fontan baffles under simulated exercise conditions: implications for exercise tolerance. Cardiovasc. Eng. Technol. 8(3):390–399, 2017. https://doi.org/10.1007/s13239-017-0310-5.

    Article  PubMed  Google Scholar 

  98. Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45(3):525–541, 2017. https://doi.org/10.1007/s10439-016-1762-8.

    Article  PubMed  Google Scholar 

  99. van der Ven, J. P. G, E. van den Bosch, A. Bogers, W. A. Helbing. State of the art of the Fontan strategy for treatment of univentricular heart disease. F1000Res. 2018;7. https://doi.org/10.12688/f1000research.13792.1.

  100. Veneziani, A., and C. Vergara. An approximate method for solving incompressible Navier-Stokes problems with flow rate conditions. Comput. Method Appl. M 196(9–12):1685–1700, 2007. https://doi.org/10.1016/j.cma.2006.09.011.

    Article  Google Scholar 

  101. Veneziani, A., and U. Villa. ALADINS: an algebraic splitting time adaptive solver for the Incompressible Navier-Stokes equations. J. Comput. Phys. 238:359–375, 2013. https://doi.org/10.1016/j.jcp.2012.11.049.

    Article  Google Scholar 

  102. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Method Appl M. 195(29–32):3776–3796, 2006. https://doi.org/10.1016/j.cma.2005.04.014.

    Article  Google Scholar 

  103. Voges, I., M. Jerosch-Herold, C. Hart, J. Scheewe, D. D. Gabbert, E. Pardun, et al. Anatomical and functional assessment of the intra-atrial lateral tunnel in the Fontan circulation. Eur. J. Cardiothorac. Surg. 44(3):462–467, 2013. https://doi.org/10.1093/ejcts/ezt066.

    Article  PubMed  Google Scholar 

  104. Wang, C., K. Pekkan, D. de Zelicourt, M. Horner, A. Parihar, A. Kulkarni, et al. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Ann. Biomed. Eng. 35(11):1840–1856, 2007. https://doi.org/10.1007/s10439-007-9356-0.

    Article  PubMed  Google Scholar 

  105. Wei, H., A. L. Cheng, and N. M. Pahlevan. On the significance of blood flow shear-rate-dependency in modeling of Fontan hemodynamics. Eur. J. Mech. B. Fluids 84:1–14, 2020. https://doi.org/10.1016/j.euromechflu.2020.05.011.

    Article  Google Scholar 

  106. Wei, Z. A., C. Huddleston, P. M. Trusty, S. Singh-Gryzbon, M. A. Fogel, A. Veneziani, et al. Analysis of inlet velocity profiles in numerical assessment of Fontan hemodynamics. Ann. Biomed. Eng. 47(11):2258–2270, 2019. https://doi.org/10.1007/s10439-019-02307-z.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wei, Z., S. Singh-Gryzbon, P. M. Trusty, C. Huddleston, Y. Zhang, M. A. Fogel, et al. Non-Newtonian effects on patient-specific modeling of Fontan hemodynamics. Ann. Biomed. Eng. 48(8):2204–2217, 2020. https://doi.org/10.1007/s10439-020-02527-8.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wei, Z. A., M. Tree, P. M. Trusty, W. Wu, S. Singh-Gryzbon, and A. Yoganathan. The advantages of viscous dissipation rate over simplified power loss as a fontan hemodynamic metric. Ann. Biomed. Eng. 46(3):404–416, 2018. https://doi.org/10.1007/s10439-017-1950-1.

    Article  PubMed  Google Scholar 

  109. Wei, Z. A., P. M. Trusty, M. Tree, C. M. Haggerty, E. Tang, M. Fogel, et al. Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning? J. Biomech. 50:172–179, 2017. https://doi.org/10.1016/j.jbiomech.2016.11.025.

    Article  PubMed  Google Scholar 

  110. Wei, Z., K. K. Whitehead, R. H. Khiabani, M. Tree, E. Tang, S. M. Paridon, et al. Respiratory effects on fontan circulation during rest and exercise using real-time cardiac magnetic resonance imaging. Ann. Thorac. Surg. 101(5):1818–1825, 2016. https://doi.org/10.1016/j.athoracsur.2015.11.011.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wei, Z. L. A., and Z. Q. C. Zheng. Fluid-structure interaction simulation on energy harvesting from vortical flows by a passive heaving foil. J. Fluid Eng. Trans. ASME. 2018. https://doi.org/10.1115/1.4037661.

    Article  Google Scholar 

  112. Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116(11 Suppl):I165–I171, 2007. https://doi.org/10.1161/CIRCULATIONAHA.106.680827.

    Article  PubMed  Google Scholar 

  113. Xu, H. J., D. Baroli, F. Di Massimo, A. Quaini, and A. Veneziani. Backflow stabilization by deconvolution-based large eddy simulation modeling. J Comput Phys. 2020. https://doi.org/10.1016/j.jcp.2019.109103.

    Article  Google Scholar 

  114. Mittal, R., J. H. Seo, V. Vedula, Y. J. Choi, H. Liu, H. H. W. Huang, et al. Computational modeling of cardiac hemodynamics: current status and future outlook. J Comput Phys. 305:1065–1082, 2016. https://doi.org/10.1016/j.jcp.2015.11.022.

  115. Yang, W., F. P. Chan, V. M. Reddy, A. L. Marsden, and J. A. Feinstein. Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149(1):247–255, 2015. https://doi.org/10.1016/j.jtcvs.2014.08.069.

    Article  PubMed  Google Scholar 

  116. Yang, W., I. E. Vignon-Clementel, G. Troianowski, V. M. Reddy, J. A. Feinstein, and A. L. Marsden. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012. https://doi.org/10.1016/j.jtcvs.2011.06.042.

    Article  PubMed  Google Scholar 

  117. Yuan, C., L. M. Mitsumori, M. S. Ferguson, N. L. Polissar, D. Echelard, G. Ortiz, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104(17):2051–2056, 2001. https://doi.org/10.1161/hc4201.097839.

    Article  CAS  PubMed  Google Scholar 

  118. Zélicourt, Dd. Ge. L., C. Wang, F. Sotiropoulos, A. Gilmanov, A. Yoganathan. Flow simulations in arbitrarily complex cardiovascular anatomies—An unstructured Cartesian grid approach. Comput. Fluids. 2009;38(9):1749-62. https://doi.org/10.1016/j.compfluid.2009.03.005.

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Fogel.

Ethics declarations

Conflict of interest

Zhenglun Wei and Mark Fogel report no conflict of interest.

Additional information

Associate Editor John Oshinski oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z.A., Fogel, M.A. Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application. Cardiovasc Eng Tech 12, 618–630 (2021). https://doi.org/10.1007/s13239-021-00541-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00541-y

Keywords

Navigation