Skip to main content
Log in

On the Effect of Longitudinal Magnetic Field on Electron Diffusion during Drift in Neon

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The results of calculations of the characteristics of electron drift in neon under dc and uniform parallel electric and magnetic fields are presented. The reduced electric fields strengths of 10, 20, 30, 50, and 100 Td at the magnetic field strength up to 10 T and the gas density of 1017 atoms per cm3 are of major interest for gas-discharge plasma physics in many applications. A numerical experiment is used to calculate main drift characteristics, including inelastic processes, and the electron energy balance is analyzed. Main features of the dependence of the transverse diffusion coefficient on the Hall parameter are analyzed, a comparison with known analytical formulas is performed. For the transverse diffusion coefficient, an approximation formula is derived, whose error is identical to the error estimation of the numerical experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).

    Google Scholar 

  2. J. Dutton, “A survey of electron swarm data,” J. Phys. Chem. Ref. Data 4, 577 (1975). https://doi.org/10.1063/1.555525

    Article  ADS  Google Scholar 

  3. Z. Lj. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, and M. Radmilović-Radenović, “Measurement and interpretation of swarm parameters and their application in plasma modeling,” J. Phys. D: Appl. Phys. 42, 194002 (2009). https://doi.org/10.1088/0022-3727/42/19/194002

    Article  ADS  Google Scholar 

  4. S. A. Mayorov, “Calculation of characterisctics of electron drift in neon under a DC electric field,” Bull. Lebedev Phys. Inst. 36, 299 (2009). https://doi.org/10.3103/S1068335609100054

    Article  ADS  Google Scholar 

  5. R. I. Golyatina and S. A. Mayorov, “Characteristics of the electron drift in a dc field for inert gases,” Appl. Phys. No. 5, 22 (2011).

    Google Scholar 

  6. S. A. Mayorov, “On the electron energy distribution in the gas discharge positive column: langmuir paradox,” Bull. Lebedev Phys. Inst. 40, 258 (2013). https://doi.org/10.3103/S1068335613090042

    Article  ADS  Google Scholar 

  7. S. K. Kodanova, N. Kh. Bastykova, T. S. Ramazanov, and S. A. Maiorov, “Drift of electrons in gas in spatially inhomogeneous periodic electric field,” Ukr. J. Phys. 59, 371 (2014). https://doi.org/10.15407/ujpe59.04.0371

    Article  Google Scholar 

  8. S. A. Maiorov, “Ion drift in a gas in an external electric field,” Plasma Phys. Rep. 35, 802 (2009). https://doi.org/10.1134/S1063780X09090098

    Article  ADS  Google Scholar 

  9. S. A. Mayorov, “Electron transport coefficients in a helium-xenon mixture,” Bull. Lebedev Phys. Inst. 41, 285 (2014). https://doi.org/10.3103/S1068335614100030

    Article  ADS  Google Scholar 

  10. R. I. Golyatina and S. A. Maiorov, “Characteristics of electron drift in an Ar–Hg mixture,” Plasma Phys. Rep. 44, 453 (2018). https://doi.org/10.1134/S1063780X18040050

    Article  ADS  Google Scholar 

  11. R. I. Golyatina and S. A. Maiorov, “On the influence of a magnetic field on the characteristics of electron drift in argon,” Appl. Phys., No. 4, 32 (2020).

    Google Scholar 

  12. H. Dreicer, “Electron and ion runaway in a fully ionized gas. I,” Phys. Rev. 115, 238 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  13. B. M. Smirnov, “Kinetics of electrons in gases and condensed systems,” Phys.-Usp. 45, 1251 (2002). https://doi.org/10.1070/PU2002v045n12ABEH001202

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-08-00611, as well as within the project no. AR08855651 “Study of structural and kinetic properties of dusty plasma in the glow discharge in electric and magnetic fields” of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mayorov.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayorov, S.A. On the Effect of Longitudinal Magnetic Field on Electron Diffusion during Drift in Neon. Bull. Lebedev Phys. Inst. 48, 107–113 (2021). https://doi.org/10.3103/S1068335621040047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335621040047

Keywords:

Navigation