Skip to main content

Advertisement

Log in

Diversity of saprotrophic filamentous fungi on Araucaria angustifolia (Bertol.) Kuntze (Brazilian pine)

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The biodiversity of filamentous fungi and their ecological relationships in the context of decaying Araucaria angustifolia (an endangered conifer) substrates are still mostly unknown. The present study aimed to investigate the diversity of saprotrophic filamentous fungi, based on morphological identification, associated with A. angustifolia, in addition to assessing possible saprobic/plant affinity relationship, and verifying whether the study areas and substrates affect the composition of the mycobiota. A total of 5000 substrates (decaying needles and twigs) were collected during five expeditions (2014/2015) to two areas: São Francisco de Paula National Forest (FLONA-SFP) and São Joaquim National Park (PARNA-SJ), Brazil. A total of 135 species distributed among 85 genera, 40 families, nine classes, 24 orders, three subphyla, and two phyla were identified. One new genus and five new species that were previously described, and six rare species and five species with affinity for A. angustifolia were also recorded. The twigs showed a community of fungi with greater richness and dominance. Conversely, the values of abundance, Simpson’s diversity index, and evenness were lower than those determined for needles. In terms of the study areas, FLONA-SFP showed higher values of richness, abundance, Simpson’s diversity index, and evenness than PARNA-SJ. Principal coordinate analysis and similarity percentage analysis showed the influence of both substrate factors and areas in the composition of the fungal communities. The presence of new, rare, and affinity-related species reinforces the study of fungi in the context of the conservation of this conifer, as these species are threatened by co-extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Meguro M, Vinueza GN, Delitti WBC (1980) Ciclagem de nutrientes minerais na Mata Mesófila Secundária, São Paulo, III - Decomposição do material foliar e liberação dos nutrientes minerais. Boletim de Botânica 8:7–20. https://doi.org/10.11606/issn.2316-9052.v8i0p7-20

    Article  Google Scholar 

  2. Fernandes AV, Backes A (1998) Produtividade primária em floresta com Araucaria angustifolia no Rio Grande do Sul. Iheringia, Série Botânica 5(11):63–78

    Google Scholar 

  3. Hättenschwiler S, Fromin N, Barantal S (2011) Functional diversity of terrestrial microbial decomposers and their substrates. C R Biologies 334:393–402. https://doi.org/10.1016/j.crvi.2011.03.001

    Article  PubMed  Google Scholar 

  4. Berg B, Berg MP, Box E, Bottner P, Breymeyer A, Calvo de Anta R, Couteaux MM, Gallardo A, Escudero A, Kratz W, Madeira M, Malkonen E, McClaugherty C, Meentemeyer M, Muñoz F, Piussi P, Remacle J, Virzo de Santo A (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159. https://doi.org/10.1007/BF00000785

    Article  Google Scholar 

  5. Allegrucci N, Bucsinszkya AM, Arturib M, Cabello MN (2015) Communities of anamorphic fungi on green leaves and leaf litter of native forests of Scutia buxifolia and Celtis tala: Composition, diversity, seasonality and substrate specificity. Rev Iberoam Micol 32(2):71–78. https://doi.org/10.1016/j.riam.2013.11.002

    Article  PubMed  Google Scholar 

  6. Osono T (2020) Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 35:30–43. https://doi.org/10.1111/1440-1703.12063

    Article  CAS  Google Scholar 

  7. Sharma RK, Arora DS (2013) Fungal degradation of lignocellulosic residues: an aspect of improved nutritive quality. Crit Rev Microbiol 41(1):52–60. https://doi.org/10.3109/1040841X.2013.791247

    Article  CAS  PubMed  Google Scholar 

  8. Barlocher F, Kendrick B (1974) Dynamics of the fungal population on leaves in a stream. J Ecol 62:761–791. https://doi.org/10.2307/2258954

    Article  Google Scholar 

  9. Jordan CF, Herrera R (1981) Tropical rain forests: are nutrients really critical? Am Nat 117(2):167–180

    Article  CAS  Google Scholar 

  10. Shanthi S, Vittal BPR (2010) Fungi associated with decomposing leaf litter of cashew (Anacardium occidentale). Mycology 1(2):121–129. https://doi.org/10.1080/21501201003743154

    Article  Google Scholar 

  11. Santana MS, Lodge DJ, Lebow P (2005) Relationship of host recurrence in fungi to rates of tropical leaf decomposition. Pedobiol 49:549–564. https://doi.org/10.1016/j.pedobi.2005.06.009

    Article  Google Scholar 

  12. McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK (2010) Functional diversity in resource use by fungi. Ecology 91:2324–2332. https://doi.org/10.1890/09-0654.1

    Article  PubMed  Google Scholar 

  13. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932

    Article  Google Scholar 

  14. Paulus BC, Kanowski J, Gadek PA, Hyde KD (2006) Diversity and distribution of saprobic microfungi in leaf litter of an Australian tropical rainforest. Mycol Res 110:1441–1454. https://doi.org/10.1016/j.mycres.2006.09.002

    Article  PubMed  Google Scholar 

  15. Costa LA, Gusmão LFP (2017) Communities of saprobic fungi on leaf litter of Vismia guianensis in remnants of the Brazilian Atlantic Forest. J For Res 28(1):163–172. https://doi.org/10.1007/s11676-016-0268-4

    Article  Google Scholar 

  16. Santa Izabel TS, Gusmão LFP (2018) Richness and diversity of conidial fungi associated with plant debris in three enclaves of Atlantic Forest in the Caatinga biome of Brazil. Plant Ecol Evol 151(1):35–47. https://doi.org/10.5091/plecevo.2018.1332

    Article  Google Scholar 

  17. Kodsueb R, Lumyong S (2019) Diversity of saprobic fungi on Magnolia garrettii: do collecting sites and seasons affect the fungal community? Sains Malaysiana 48(11):2437–2449. https://doi.org/10.17576/jsm-2019-4811-14

    Article  Google Scholar 

  18. Lacerda LT, Gusmão LFP, Rodrigues A (2019) Fungal communities in different aged leaves of Eucalyptus microcorys F. Muell Braz J Bot 42(3):499–508. https://doi.org/10.1007/s40415-019-00557-8

    Article  Google Scholar 

  19. Hollins TW, Jellis GJ, Scott PR (1983) Infection of potato and wheat by isolates of Rhizoctonia solani and Rhizoctonia cerealis. Plant Pathol 32:303–310. https://doi.org/10.1111/j.1365-3059.1983.tb02838.x

    Article  Google Scholar 

  20. Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105(12):1449–1457. https://doi.org/10.1017/S0953756201004713

    Article  Google Scholar 

  21. Hyde KD (2001) Where are the missing fungi? Does Hong Kong have any answers? Mycol Res 105:1514–1518. https://doi.org/10.1017/S0953756201004889

    Article  Google Scholar 

  22. Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, Mckenzie EHC, Photita W, Lumyong S (2007) Diversity of saprobic microfungi. Biodivers Conserv 16:7–35. https://doi.org/10.1007/s10531-006-9119-5

    Article  Google Scholar 

  23. Stevenson JA (1975) Fungi of Puerto Rico and the American Virgin Islands. Contr Reed Herb, USA

    Google Scholar 

  24. Crous PW, Seifert KA, Castañeda Ruiz RF (1996) Microfungi associated with Podocarpus leaf litter in South Africa. S Afr J Bot 62(2):89–98. https://doi.org/10.1016/S0254-6299(15)30597-4

    Article  Google Scholar 

  25. Minter DW, Holubová-Jechová V (1981) New or interesting Hyphomycetes on decaying pine litter from Czechoslovakia. Folia Geobot Phytotax Praha 16:195–217. https://doi.org/10.1007/BF02851863

    Article  Google Scholar 

  26. Tokumasu S (1998) Fungal successions on pine needles fallen at different seasons: the succession of surface colonizers. Mycoscience 39(4):417–423. https://doi.org/10.1007/bf02460902

    Article  Google Scholar 

  27. Tokumasu S, Aoiki T (2002) A new approach to studying microfungal succession on decaying pine needles in an oceanic subtropical region in Japan. In: K.D. Hyde and E.B.G. Jones (eds) Fungal succession. Fungal Diversity 10:167–183

  28. Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401. https://doi.org/10.3114/sim0003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomas P (2013) Araucaria angustifolia. The IUCN Red List of Threatened Species https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32975A2829141.en Accessed 24 April 2020

  30. Shimizu JY, Oliveira YMM (1981) Distribuição da variação e usos de recursos genéticos de araucária no Sul do Brasil. Embrapa-URPFCS, Curitiba

    Google Scholar 

  31. Souza VC (2015) Araucariaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB33971 Accessed 31 May 2020

  32. Cozzo D (1980) Distribución fitogeográfica en la Argentina de Araucaria araucana y A. angustifolia. In: IUFRO meeting on forestry problems of the genus Araucaria. FUPEF, Curitiba, pp. 1–3

  33. Lopez JA, Little Junior EL, Ritz GF, Rombold JS, Hahn WJ (1987) Arboles comunes del Paraguay: nande yvyra mata kuera. Cuerpo de Paz, Colección e Intercambio de Información, Washington

  34. Sutton BC, Hodges CSJr (1977) Harknessia araucariae from Brazil. Mycologia 69:829–831. https://doi.org/10.2307/3758872

    Article  Google Scholar 

  35. Kirk PM, Sutton BCA (1985) Reassessment of the anamorph genus Chaetopsina (hyphomycetes). Trans Br Mycol Soc 85(4):709–718. https://doi.org/10.1016/S0007-1536(85)80267-9

    Article  Google Scholar 

  36. Silva SS, Silva CR, Gusmão LFP, Castañeda-Ruiz RF (2015) A new species of Chaetochalara on decaying leaves from Brazil. Mycotaxon 130:505–509. https://doi.org/10.5248/130.505

    Article  Google Scholar 

  37. Silva SS, Gusmão LFP, Castañeda-Ruiz RF (2015) Cryptocoryneum parvulum, a new species on Araucaria angustifolia (Brazilian pine). Mycotaxon 130:465–469. https://doi.org/10.5248/130.465

    Article  Google Scholar 

  38. Silva SS, Gusmão LFP, Castañeda-Ruiz RF (2015) Conidial fungi on Araucaria angustifolia: Trichoconis foliicola sp. nov. and two new records from Brazil. Mycotaxon 130:1051–1059. https://doi.org/10.5248/130.1051

    Article  Google Scholar 

  39. Silva SS, Castañeda-Ruiz RF, Gusmão LFP (2015) New species and records of Dictyosporium on Araucaria angustifolia (Brazilian pine). Nova Hedwigia 102:523–530. https://doi.org/10.1127/nova_hedwigia/2015/0325

    Article  Google Scholar 

  40. Silva SS, Gusmão LFP, Castañeda-Ruiz RF (2016) Arthromoniliphora araucariae gen. & sp. nov. from Brazilian pine. Mycotaxon 131:821–826. https://doi.org/10.5248/131.821

    Article  Google Scholar 

  41. Silva SS, Gusmão LFP (2017) New records of rare dematiaceous conidial fungi on Araucaria angustifolia from Brazil. Nova Hedwigia 104(4):529–538. https://doi.org/10.1127/nova_hedwigia/2016/0390

    Article  Google Scholar 

  42. Hodges CS, May LC (1972) A root disease of pine, Araucaria and Eucalyptus in Brazil caused by a new species of Cylindrocladium. Phytopathology 62:898–901. https://doi.org/10.1094/Phyto-62-898

    Article  Google Scholar 

  43. Butin H, Peredo HL (1986) Hongos parasitos em coniferas de America Del Sur, con especial referencia a Chile. Biblioth Mycol 101:1–100

    Google Scholar 

  44. Auer CG, Grigoletti A Jr (1997) Doenças registradas em Araucaria angustifolia e Pinus spp. nos estados do Paraná e de Santa Catarina. Colombo EMBRAPA-CNPF 31:1–3

    Google Scholar 

  45. Crous PW (2002) Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. American Phytopathological Society, St. Paul

    Google Scholar 

  46. Farr DF, Rossman AY (2020) Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/ Accessed 7 July 2020

  47. Mendes MAS, Urben AF (2020) Fungos relatados em plantas no Brasil, Laboratório de Quarentena Vegetal. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia. http://pragawall.cenargen.embrapa.br/aiqweb/michtml/fgbanco01.asp Accessed 25 June 2020

  48. Moreira M, Trufem SFB, Gomes-Da-Costa SM, Cardoso EJBN (2003) Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze Mycorrhiza 13:211–215. https://doi.org/10.1007/s00572-003-0221-1

    Article  CAS  Google Scholar 

  49. Moreira M, Baretta D, Tsai SM, Gomes-da-Costa SM, Cardoso EJBN (2007) Biodiversity and distribution of arbuscular mycorrhizal fungi in Araucaria angustifolia forest. Scientia agricola 64(4):393–399. https://doi.org/10.1590/S0103-90162007000400010

    Article  Google Scholar 

  50. Moreira M, Baretta D, Cardoso EJBN (2012) Doses de fósforo determinam a prevalência de fungos micorrízicos arbusculares em Araucaria angustifolia. Ciência Florestal 22(4):813–820. https://doi.org/10.5902/198050987562

    Article  Google Scholar 

  51. Silva RF, Antoniolli ZI, Leal L, Silva AS (2009) Ocorrência de fungos micorrízicos em espécies florestais na região central do estado do Rio Grande do Sul. R Bras Agrociência 15(1–4):65–70

    Article  Google Scholar 

  52. Zandavalli RB, Stürmer SL, Dillenburg RL (2008) Species richness of arbuscular mycorrhizal fungi in forests with Araucaria in Southern Brazil. Hoehnea 35(1):63–68. https://doi.org/10.1590/S2236-89062008000100003

    Article  Google Scholar 

  53. Vilcatoma-Medina C, Kaschuk G, Zanette F (2018) Colonization and spore richness of arbuscular mycorrhizal fungi in Araucaria nursery seedlings in Curitiba, Brazil. Hindawi Int J Agron 2018:1–6. https://doi.org/10.1155/2018/5294295

    Article  CAS  Google Scholar 

  54. Nimer E (1979) Climatologia do Brasil. Recursos naturais e meio ambiente, Instituto Brasileiro de Geografia e Estatística (IBGE). Superintendência de Recursos Naturais e Meio Ambiente (SUPREN), Rio de Janeiro

  55. ICMBio (2020) Plano de Manejo da Floresta Nacional de São Francisco de Paula. http://www.icmbio.gov.br/portal/flona-de-sao-francisco-de-paula?highlight=WyJmbG9uYSJd Accessed 26 June 2020

  56. Sonego RC, Backes A, Souza AF (2007) Descrição da estrutura de uma Floresta Ombrófila Mista, RS, Brasil, utilizando estimadores não-paramétricos de riqueza e rarefação de amostras. Acta bot Bras 21(4):943–955. https://doi.org/10.1590/S0102-33062007000400019

    Article  Google Scholar 

  57. Ferreira LM, Menezes EO, Silva PSC, Omena MTRN, Zanchetti F (2018) Plano de manejo do Parque Nacional de São Joaquim. ICMBio, Brasília

    Google Scholar 

  58. MMA- Ministério do Meio Ambiente (2020) Parque Nacional de São Joaquim. Cadastro Nacional de Unidades de Conservação. http://sistemas.mma.gov.br/cnuc/index.php?ido=relatorioparametrizado.exibeRelatorio&relatorioPadrao=true&idUc=165 Accessed 26 June 2020

  59. Castañeda Ruiz RF, Heredia G, Gusmão LFP, LI D-W (2016) Fungal diversity of Central and South America. In: LI D-W (ed) Biology of Microfungi, Fungal Biology. Springer, Cham, pp. 197–217. https://doi.org/10.1007/978-3-319-29137-6_9

  60. Trappe JM, Schenck NC (1982) Taxonomy of the fungi forming endomycorrhizae. In: Schenck NC (ed) Methods and principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul, pp 1–9

    Google Scholar 

  61. Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS Biodiversity Series no.9. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  62. Brower JE, Zar JH, Von Ende CN (1998) Field and laboratory methods for general ecology. Wm. C. Brown Publishers, Iowa

    Google Scholar 

  63. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Statist 11:265–270

    Google Scholar 

  64. Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd, Oxford. https://doi.org/10.2989/16085910409503825

    Book  Google Scholar 

  65. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  66. Presenti N, Quatto P, Ripamonti E (2017) Bootstrap confidence intervals for biodiversity measures based on Gini index and entropy. Qual Quant 51:847–858. https://doi.org/10.1007/s11135-016-0443-x

    Article  Google Scholar 

  67. Wilson JB (1991) Methods for fitting dominance/diversity curves. J Veg Sci 2:35–46. https://doi.org/10.2307/3235896

    Article  Google Scholar 

  68. Dajoz R (1983) Ecologia Geral. Vozes, Petrópolis

    Google Scholar 

  69. Gower JC (2005) Principal coordinates analysis In: Armitage P, Colton T (eds) Encyclopedia of biostatistics. John Wiley & Sons Ltd, Chichester, pp 1–6. https://doi.org/10.1002/0470011815.b2a13070

  70. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  71. Anderson MJ (2017) Permutational multivariate analysis of variance (PERMANOVA). Wiley Stats Refs: Statistics Reference Online https://doi.org/10.1002/9781118445112.stat07841

  72. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  73. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed 23 May 2020

  74. McAleece N (1997) Biodiversity Professional Beta I. The Natural History Museum & The Scottish Association for Marine Science, London

    Google Scholar 

  75. Wallen RM, Perlin MH (2018) An overview of the function and maintenance of sexual reproduction in dikaryotic fungi. Front Microbiol 9:1–24. https://doi.org/10.3389/fmicb.2018.00503

    Article  Google Scholar 

  76. Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating anamorphic fungi in a natural classification – checklist and notes for 2010. Mycosphere 2(1):1–88

    Google Scholar 

  77. Spatafora JW, Sung G-H, Johnson D, Hesse CN, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller A, Geiser D, Hafellner J, Hestmark G, Arnold A, Büdel B, Rauhut A, Hewitt D, Untereiner W, Cole M, Scheidegger C, Schultz M, Sipman H, Schoch C (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98(6):1018–1028. https://doi.org/10.3852/mycologia.98.6.1018

    Article  CAS  PubMed  Google Scholar 

  78. Melo M, Araujo ACV, Chogi MAN, Duarte ICS (2018) Cellulolytic and lipolytic fungi isolated from soil and leaf litter samples from the Cerrado (Brazilian Savanna). Rev Biol Trop 66(1):237–245. https://doi.org/10.15517/rbt.v66i1.27768

    Article  Google Scholar 

  79. Cai LK, Frang JI, Hyde KD (2006) Variation between freshwater and terrestrial fungal communities on decaying bamboo culms. Anton Leeuw 89:293–301. https://doi.org/10.1007/s10482-005-9030-1

    Article  Google Scholar 

  80. Hernández-Restrepo M, Gené J, Castañeda-Ruiz RF, Mena-Portales J, Crous PW, Guarro J (2017) Phylogeny of saprobic microfungi from Southern Europe. Stud Mycol 86:53–97. https://doi.org/10.1016/j.simyco.2017.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  81. Monteiro JS, Sarmento PSM, Sotão HMP (2019) Saprobic conidial fungi associated with palm leaf litter in eastern Amazon. Brazil An Acad Bras Cienc 91(3):e20180545. https://doi.org/10.1590/0001-3675201920180545

    Article  PubMed  Google Scholar 

  82. Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–102. https://doi.org/10.3114/sim.2009.64.04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boddy L (2016) Interactions with humans and other animals. In: Watkinson SC, Boddy L, Money NP (eds) The fungi, Academic Press, pp 293–336. https://doi.org/10.1016/B978-0-12-382034-1.00009-8

  84. Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Ann Rev Phytopathol 23:97–127. https://doi.org/10.1146/annurev.py.23.090185.000525

    Article  CAS  Google Scholar 

  85. Maharachchikumbura SSN, Hyde KD, Gareth JEB, McKenzie EHC, Huang S-K, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D’souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu J-K, Liu Z-Y, Norphanphoun C, Pang K-L, Perera RH, Senanayake IC, Shang Q, Shenoy BD, Xiao Y, Bahkali AH, Kang J, Somrothipol S, Suetrong S, Wen T, Xu J (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72:199–301. https://doi.org/10.1007/s13225-015-0331-z

    Article  Google Scholar 

  86. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E (2019) Preliminary classification of Leotiomycetes. Mycosphere 10(1):310–489. https://doi.org/10.5943/mycosphere/10/1/7

    Article  Google Scholar 

  87. Boonmee S, D’souza MJ, Luo Z, Pinruan U, Tanaka K, Su H, Bhat DJ, McKenzie EHC, Jones EBG, Taylor JE, Phillips AJL, Hirayama K, Eungwanichayapant PD, Hyde HD (2016) Dictyosporiaceae fam. nov. Fungal Diversity 80:457–482. https://doi.org/10.1007/s13225-016-0363-z

    Article  Google Scholar 

  88. Couturier M, Navarro D, Favel A, Haon M, Lechat C, Lesage-Meessen L, Chevret D, Lombard V, Henrissat B, Berrin JG (2016) Fungal secretomics of ascomycete fungi for biotechnological applications. Mycosphere 7(10):1546–1553. https://doi.org/10.5943/mycosphere/si/3b/6

    Article  Google Scholar 

  89. McKenzie EHC, Buchanan PK, Johnston PR (2002) Checklist of fungi on kauri (Agathis australis) in New Zealand. New Zeal J Bot 40(2):269–296. https://doi.org/10.1080/0028825X.2002.9512788

    Article  Google Scholar 

  90. Tokumasu S, Aoki TA, Oberwinkler F (1994) Fungal succession on pine needles in Germany. Mycoscience 35:29–37. https://doi.org/10.1007/BF02268525

    Article  Google Scholar 

  91. Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–718. https://doi.org/10.1038/nature01547

    Article  CAS  PubMed  Google Scholar 

  92. McGill B, Etienne R, Gray J, Alonso D, Anderson M, Benecha H, Dornelas M, Enquist B, Green J, He F, Hurlbert A, Magurran AE, Marquet P, Maurer B, Ostling A, Soykan C, Ugland K, White E (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015. https://doi.org/10.1111/j.1461-0248.2007.01094.x

    Article  PubMed  Google Scholar 

  93. Bills GF, Polishook JD (1994) Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86(2):187–198. https://doi.org/10.1080/00275514.1994.12026393

    Article  Google Scholar 

  94. Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests: variation in time and space. Can J Bot 73(S1):1391–1398. https://doi.org/10.1139/b95-402

    Article  Google Scholar 

  95. Tsui CKM, Hyde KD, Hodgkiss IJ (2000) Biodiversity of fungi on submerged wood in Hong Kong streams. Aquat Microb Ecol 21:289–298

    Article  Google Scholar 

  96. Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254. https://doi.org/10.1016/j.funeco.2009.12.001

    Article  Google Scholar 

  97. Prakash CP, Thirumalai E, Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS (2015) Ecology and diversity of leaf litter fungi during early-stage decomposition in a seasonally dry tropical forest. Fungal Ecol 17:103–113. https://doi.org/10.1016/j.funeco.2015.05.004

    Article  Google Scholar 

  98. Yuen TK, Hyde KD, Hodgkiss IJ (1999) Wood-degrading capabilities of tropical freshwater fungi. Material and Organismen 33:37–48

    Google Scholar 

  99. Yanna WHH, Hyde KD (2001) Fungal communities on decaying palm fronds in Australia, Brunei, and Hong Kong. Mycol Res 105(12):458–1471. https://doi.org/10.1017/S0953756201005214

    Article  Google Scholar 

  100. Hyde KD, Chalermpongse A, Boonthavikoon T (1990) Ecology of intertidal fungi at Ranong mangrove, Thailand. Trans Mycol Soc Japan 31:17–28

    Google Scholar 

  101. Pinruan U, Hyde KD, Lumyong S, McKenzie EHC, Jones EBG (2007) Occurrence of fungi on tissues of the peat swamp palm Licuala longicalycata. Fungal Diversity 25:157–173

    Google Scholar 

  102. Lee S, Mel’nik V, Taylor JE, Crous PW (2004) Diversity of saprobic hyphomycetes on Proteaceae and Restionaceae from South Africa. Fungal Diversity 17:91–114

    Google Scholar 

  103. Barbosa FR, Maia LC, Gusmão LFP (2009) Fungos conidiais associados ao folhedo de Clusia melchiorii Gleason e C. nemorosa G. Mey. (Clusiaceae) em fragmento de Mata Atlântica, Bahia. Brasil Acta Bot Bras 23:79–84. https://doi.org/10.1590/S0102-33062009000100010

    Article  Google Scholar 

  104. Thomas K, Chilvers GA, Norris RH (1989) Seasonal occurrence of conidia of aquatic hyphomycetes (fungi) in Lees Creek, Australian Capital Territory. Aust J Mar Freshw Res 40:11–23. https://doi.org/10.1071/MF9890011

    Article  CAS  Google Scholar 

  105. Agrios GN (2004) Plant pathology. Academic Press, San Diego

    Google Scholar 

  106. Abdullah SK, Gené J, Guarro J (2005) A synopsis of the aero-aquatic genus Pseudaegerita and description of two new species. Mycol Res 109:590–594. https://doi.org/10.1017/S0953756205002819

    Article  PubMed  Google Scholar 

  107. Abdullah SK, Webster J (1983) The aero-aquatic genus Pseudaegerita. Trans Br Mycol Soc 80:247–254. https://doi.org/10.1016/S0007-1536(83)80007-2

    Article  Google Scholar 

  108. Mastrobert AA, Mariath JEA (2003) Leaf anatomy of Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae). Revista Brasil Bot. 26(3):343–353. https://doi.org/10.1590/S0100-84042003000300007

    Article  Google Scholar 

  109. Reblová M, Seifert KA (2011) Discovery of the teleomorph of the hyphomycetes, Sterigmatobotrys macrocarpa and epitypification of the genus to holomorphic status. Stud Mycol 68:193–202. https://doi.org/10.3114/sim.2011.68.08

    Article  PubMed  PubMed Central  Google Scholar 

  110. Butterfield BG (2003) Wood anatomy in relation to wood quality. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell Publishing Ltd, Oxford, pp 30–52

    Google Scholar 

  111. Minami E, Saka S (2003) Comparison of the decomposition behaviors of hardwood and softwood in supercritical methanol. J Wood Sci 49:73–78. https://doi.org/10.1007/s100860300012

    Article  CAS  Google Scholar 

  112. Campbell MM, Sederoff RR (1996) Variation in lignin content and composition (mechanism of control and implications for the genetic improvement of plants). Plant Physiol 110:3–13. https://doi.org/10.1104/pp.110.1.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nag Raj TR, Kendrick B (1975) A monograph of Chalara and allied genera. Wilfrid Laurier University Press, Ontario

    Google Scholar 

  114. McKenzie EHC, O’Sullivan PJ, Wilkie JP (1992) A list of type specimens of New Zealand fungi held in DSIR Plant Protection Herbarium (PDD). Mycotaxon 43:77–156

    Google Scholar 

  115. Feinstein LM, Blackwood CB (2013) The spatial scaling of saprotrophic fungal beta diversity in decomposing leaves. Mol Ecol 22:1171–1184. https://doi.org/10.1111/mec.12160

    Article  CAS  PubMed  Google Scholar 

  116. Taylor JE, Hyde KD, Jones EBG (2000) The biogeographical distribution of microfungi associated with three palm species from tropical and temperate habitats. J Biogeography 27:297–310. https://doi.org/10.1046/j.1365-2699.2000.00385.x

    Article  Google Scholar 

  117. Yanna WHH, Hyde KD, Goh TK (2001) Occurrence of fungi on tissues of Livistona chinensis. Fungal Diversity 6:167–180

    Google Scholar 

  118. Hyde KD, Ho WH, McKenzie EHC, Dalisay T (2001) Saprobic fungi on bamboo culms. Fungal Diversity 7:35–48

    Google Scholar 

  119. Prihatini I, Glen M, Wardlaw TJ, Ratkowsky DA, Mohammed CL (2015) Needle fungi in young Tasmanian Pinus radiata plantations in relation to elevation and rainfall. N Z J For Sci 45:25. https://doi.org/10.1186/s40490-015-0055-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Postgraduate Program in Botany (PPGBot/UEFS) and ICMBIO for permission to collect samples in the “Floresta Nacional de São Francisco de Paula” and the “Parque Nacional de São Joaquim” (Proc.: 42334-1).

Funding

The authors SSS and LFPG are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (Proc.: 141475/2013–7 and 303062/2014–2, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Fernando Pascholati Gusmão.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: LUCY SELDIN

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Supplementary file2 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.S., Costa, L.A. & Gusmão, L.F.P. Diversity of saprotrophic filamentous fungi on Araucaria angustifolia (Bertol.) Kuntze (Brazilian pine). Braz J Microbiol 52, 1489–1501 (2021). https://doi.org/10.1007/s42770-021-00531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00531-1

Keywords

Navigation