Skip to main content

Advertisement

Log in

Highly Wet Chlorella minutissima Biomass for In Situ Biodiesel Production and Residual Biomass Rich in Labile Carbohydrates

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study evaluated the use of biomass of Chlorella minutissima grown in 40-L photobioreactors using a Guillard f/2 biomass at over 80% moisture content as feedstock to produce ethyl esters. The study design investigated the influence of acid catalyst type (HCl or H2SO4) and concentration (0.3 or 0.6 mol L−1), co-solvent to ethanol ratio (1:10 or 1:5 v/v), and acyl acceptor to biomass ratio (25 mL g−1 or 50 mL g−1) on ester yield and conversion. An L8 Taguchi design was used to evaluate the influence of the factors, demonstrating a range of conversion ranging from 37 to 98%. Furthermore, the effects of reaction conditions on the residual biomass were assessed by measuring the concentration of acid-labile carbohydrates, which could be utilized in integrated sugar- and lipid-based algal refineries. It was found that in situ transesterification using HCl can provide easily accessible and fermentable carbohydrates at concentrations of about 32 wt% in residual biomass. In this sense, the findings of this study demonstrate a further step in the integration of microalgae biomass in the development of liquid-fuel biorefineries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160. https://doi.org/10.1002/lite.200800044

    Article  Google Scholar 

  2. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnerg Res 1(1):20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  3. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235. https://doi.org/10.1126/science.1152747

    Article  CAS  PubMed  Google Scholar 

  4. Caspeta L, Nielsen J (2013) Economic and environmental impacts of microbial biodiesel. Nat Biotechnol 31(9):789–93. https://doi.org/10.1038/nbt.2683

    Article  CAS  PubMed  Google Scholar 

  5. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC et al (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  6. Kim B, Heo HY, Son J, Yang J, Chang Y-K, Lee JH, Lee JW (2019) Simplifying biodiesel production from microalgae via wet in situ transesterification: a review in current research and future prospects. Algal Res 41:101557. https://doi.org/10.1016/j.algal.2019.101557

    Article  Google Scholar 

  7. Makareviciene V, Sendzikiene E, Gumbyte M (2020) Application of simultaneous oil extraction and transesterification in biodiesel fuel synthesis: a review. Energies 13(9):2204. https://doi.org/10.3390/en13092204

    Article  CAS  Google Scholar 

  8. Nguyen TT, Lam MK, Uemura Y, Mansor N, Lim JW, Show PL, Tan IS, Lim S (2020) High biodiesel yield from wet microalgae paste via in-situ transesterification: effect of reaction parameters towards the selectivity of fatty acid esters. Fuel 272:117718. https://doi.org/10.1016/j.fuel.2020.117718

    Article  CAS  Google Scholar 

  9. Felix C, Ubando A, Madrazo C, Gue IH, Sutanto S, Tran-Nguyen PL, Go AW, Ju Y-H, Culaba A, Chang J-S, Chen W-H (2019) Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters. Appl Energ 248:526–537. https://doi.org/10.1016/j.apenergy.2019.04.149

    Article  CAS  Google Scholar 

  10. Sathish Kumar R, Sureshkumar K, Velraj R (2015) Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel 140:90–96. https://doi.org/10.1016/j.fuel.2014.09.103

    Article  CAS  Google Scholar 

  11. Dhawane SH, Kumar T, Halder G (2016) Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: optimization by Taguchi method. Renew Energ 89:506–514. https://doi.org/10.1016/j.renene.2015.12.027

    Article  CAS  Google Scholar 

  12. Amaral MS, Loures CC, Da Rós PCM, Machado SA, Reis CER, de Castro HF, Silva MB (2015) Evaluation of the cultivation conditions of marine microalgae Chlorella sp. to be used as feedstock in ultrasound-assisted ethanolysis. Biofuel Res J 7:288–94. https://doi.org/10.18331/BRJ2015.2.3.7

    Article  CAS  Google Scholar 

  13. Loures CCA, Amaral MS, Da Rós PCM, Zorn SMFE, de Castro HF, Silva MB (2018) Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: a comparison between homogeneous and heterogeneous catalysts. Fuel 211:261–268. https://doi.org/10.1016/j.fuel.2017.09.073

    Article  CAS  Google Scholar 

  14. Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89(3):677–684. https://doi.org/10.1016/j.fuel.2009.10.011

    Article  CAS  Google Scholar 

  15. Moxley G, Zhang YHP (2007) More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energ Fuels 21(6):3684–3688. https://doi.org/10.1021/ef7003893

    Article  CAS  Google Scholar 

  16. Paiva EJM, da Silva MLCP, Barboza JCS, de Oliveira PC, de Castro HF, Giordani DS (2013) Non-edible babassu oil as a new source for energy production–a feasibility transesterification survey assisted by ultrasound. Ultrason Sonochem 20(3):833–838. https://doi.org/10.1016/j.ultsonch.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  17. dos Santos LK, Hatanaka RR, de Oliveira JE, Flumignan DL (2017) Experimental factorial design on hydroesterification of waste cooking oil by subcritical conditions for biodiesel production. Renew Energ 114:574–580. https://doi.org/10.1016/j.renene.2017.07.066

    Article  CAS  Google Scholar 

  18. Talebi AF, Tabatabaei M, Chisti Y (2014) BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J 1(2):55–57. https://doi.org/10.18331/BRJ2015.1.2.4

    Article  CAS  Google Scholar 

  19. Marsden WL, Gray PP, Nippard GJ, Quinlan MR (1982) Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J Chem Technol Biotechnol 32(7–12):1016–1022. https://doi.org/10.1002/jctb.5030320744

    Article  CAS  Google Scholar 

  20. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27(8):631–635. https://doi.org/10.1016/s0141-0229(00)00266-0

    Article  CAS  PubMed  Google Scholar 

  21. Zorn SMFE, Reis CER, Bento HBS, de Carvalho AKF, Silva MB, De Castro HF (2020) In situ transesterification of marine microalgae biomass via heterogeneous acid catalysis. BioEnerg Res 13(4):1260–1268. https://doi.org/10.1007/s12155-020-10151-6

    Article  CAS  Google Scholar 

  22. Amaral MS, Loures CCA, Pedro GA, Reis CER, De Castro HF, Naves FL, Silva MB, Prata AMR (2020) An unconventional two-stage cultivation strategy to increase the lipid content and enhance the fatty acid profile on Chlorella minutissima biomass cultivated in a novel internal light integrated photobioreactor aiming at biodiesel production. Renew Energ 156:591–601. https://doi.org/10.1016/j.renene.2020.04.084

    Article  CAS  Google Scholar 

  23. Cohen Z (1999) Chemicals from microalgae, 1st edn. CRC Press, London

    Google Scholar 

  24. Go AW, Sutanto S, Ong LK, Tran-Nguyen PL, Ismadji S, Ju Y-H (2016) Developments in in-situ (trans) esterification for biodiesel production: a critical review. Renew Sust Energ Rev 60:284–305. https://doi.org/10.1016/j.rser.2016.01.070

    Article  CAS  Google Scholar 

  25. Skorupskaite V, Makareviciene V, Gumbyte M (2016) Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: a review. Fuel Proc Technol 150:78–87. https://doi.org/10.1016/j.fuproc.2016.05.002

    Article  CAS  Google Scholar 

  26. Im H, Kim B, Lee JW (2015) Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae. Bioresour Technol 193:386–392. https://doi.org/10.1016/j.biortech.2015.06.122

    Article  CAS  PubMed  Google Scholar 

  27. Kim B, Im H, Lee JW (2015) In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresour Technol 185:421–425. https://doi.org/10.1016/j.biortech.2015.02.092

    Article  CAS  PubMed  Google Scholar 

  28. Suh WI, Mishra SK, Kim T-H, Farooq W, Moon M, Shrivastav A et al (2015) Direct transesterification of wet microalgal biomass for preparation of biodiesel. Algal Res 12:405–411. https://doi.org/10.1016/j.algal.2015.10.006

    Article  Google Scholar 

  29. Haas MJ, Wagner K (2011) Simplifying biodiesel production: the direct or in situ transesterification of algal biomass. Eur J Lipid Sci Technol 113(10):1219–1229. https://doi.org/10.1002/ejlt.201100106

    Article  CAS  Google Scholar 

  30. Im H, Lee H, Park MS, Yang JW, Lee JW (2014) Concurrent extraction and reaction for the production of biodiesel from wet microalgae. Bioresour Technol 152:534–537. https://doi.org/10.1016/j.biortech.2013.11.023

    Article  CAS  PubMed  Google Scholar 

  31. Karimi M (2017) Exergy-based optimization of direct conversion of microalgae biomass to biodiesel. J Clean Prod 141:50–55. https://doi.org/10.1016/j.jclepro.2016.09.032

    Article  CAS  Google Scholar 

  32. Knothe G, Matheaus AC, Ryan TW (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82(8):971–975. https://doi.org/10.1016/S0016-2361(02)00382-4

    Article  CAS  Google Scholar 

  33. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100(1):261–268. https://doi.org/10.1016/j.biortech.2008.06.039

    Article  CAS  PubMed  Google Scholar 

  34. Cavalheiro LF, Misutsu MY, Rial RC, Viana LH, Oliveira LCS (2020) Characterization of residues and evaluation of the physico chemical properties of soybean biodiesel and biodiesel: diesel blends in different storage conditions. Renew Energ 151:454–462. https://doi.org/10.1016/j.renene.2019.11.039

    Article  CAS  Google Scholar 

  35. Elkelawy M, Bastawissi HA-E, Esmaeil KK, Radwan AM, Panchal H, Sadasivuni KK et al (2020) Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel 266:117072. https://doi.org/10.1016/j.fuel.2020.117072

    Article  CAS  Google Scholar 

  36. dos Santos LK, Hatanaka RR, de Oliveira JE, Flumignan DL (2019) Production of biodiesel from crude palm oil by a sequential hydrolysis/esterification process using subcritical water. Renew Energ 130:633–640. https://doi.org/10.1016/j.renene.2018.06.102

    Article  CAS  Google Scholar 

  37. Chen Y-H, Huang B-Y, Chiang T-H, Tang T-C (2012) Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel 94:270–273. https://doi.org/10.1016/j.fuel.2011.11.031

    Article  CAS  Google Scholar 

  38. Isaza-Pérez F, Ramírez-Carmona M, Rendón-Castrillón L, Ocampo-López C (2020) Potential of residual fungal biomass: a review. Environ Sci Pol Res 27(12):13019–13031. https://doi.org/10.1007/s11356-020-08193-6

    Article  Google Scholar 

  39. Reis CER, Zhang J, Hu B (2014) Lipid accumulation by pelletized culture of Mucor circinelloides on corn stover hydrolysate. Appl Biochem Biotechnol 174:411–423. https://doi.org/10.1007/s12010-014-1112-y

    Article  CAS  PubMed  Google Scholar 

  40. Park C, Lee JH, Yang X, Yoo HY, Lee JH, Lee SK et al (2016) Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid. Bioproc Biosys Eng 39(6):1015–1021. https://doi.org/10.1007/s00449-016-1570-4

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the São Paulo State Research Foundation (FAPESP, grant no. 16/10636–8) and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, finance code 001) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

Guilherme A. Pedro: conceptualization, writing—original draft, writing—review & editing, investigation. Mateus S. Amaral: methodology, formal analysis, validation. Felix M. Pereira: formal analysis, validation, writing—original draft. Danilo Luiz Flumignan: methodology, writing—original draft. Patrícia C. M. Da Rós: visualization, resources, writing—review & editing, supervision. Cristiano E. R. Reis: writing—original draft, writing—review & editing, formal analysis, validation. Messias Borges Silva: conceptualization, visualization, resources, supervision, project administration.

Corresponding author

Correspondence to Patrícia C. M. Da Rós.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• In situ transesterification was performed using highly wet algal biomass.

• The process achieved 98.4% conversion to fatty acid ethyl esters.

• The residual biomass contained up to 32 wt% acid-labile carbohydrates.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedro, G.A., Amaral, M.S., Pereira, F.M. et al. Highly Wet Chlorella minutissima Biomass for In Situ Biodiesel Production and Residual Biomass Rich in Labile Carbohydrates. Bioenerg. Res. 15, 154–165 (2022). https://doi.org/10.1007/s12155-021-10295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10295-z

Keyword

Navigation