Skip to main content
Log in

Graphene-Based Aerogels Possessing Superhydrophilic and Superhydrophobic Properties and Their Application for Electroreduction of Molecular Oxygen

  • Published:
Colloid Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A composite aerogel with superhydrophobic external surface has been synthesized from reduced graphene oxide and polytetrafluoroethylene taken in a weight ratio of 1 : 1. The porous structure of the aerogel has been studied by the standard contact porosimetry method (SCPM). The porosimetric curves measured with respect to octane and water intersect in the region of small pores, thereby leading to the fact that the specific surface area of the aerogel in water is much larger than that in octane, although octane is known to wet any material almost ideally. This phenomenon, which is referred to as “superhydrophilicity,” is explained by the fact that, in the region of mesopores, a sample swells in water due to the hydration of surface –CO and –COH groups, which have been identified with the help of IR and Raman spectroscopies. Thus, the outside surface of the aerogel granules is superhydrophobic, while their interior is superhydrophilic in the region of small pores. As follows from the SCPM data, the total porosity and specific surface area of the aerogel are substantially larger than those of Vulcan XC-72 carbon black, which is a standard carrier for Pt catalysts used in fuel cells based on proton-exchange membranes. Oxygen electroreduction at the aerogel, containing Pt deposited in an amount of 28 µg/cm2, has been studied by the method of rotating disk electrode (RDE) in an aqueous 0.5 M H2SO4 solution, and the results obtained have been compared with the data on standard commercial Pt (20%)/Vulcan XC-72 catalyst. It has been shown that the limiting diffusion RDE currents for Pt supported on the hydrophobic–hydrophilic aerogel are markedly higher than those for the standard catalyst because of the easier access of oxygen to the reaction zone as compared with hydrophilic Vulcan XC-72 carbon black carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zisman, W.A., Contact angle, wettability and adhesion, in Advances in Chemistry Series, Washington, DC: Am. Chem. Soc., 1964, vol. 43, p. 513.

    Google Scholar 

  2. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer, 2014.

    Book  Google Scholar 

  3. Gottesfeld, S. and Zawodzinski, T.A., in Advances in Electrochemical Science and Engineering, Alkire, L.C., Gerischer, H., Kolb, D.M., and Tobias, C.W., Eds., Toronto: Wiley, 1997, p. 195.

    Google Scholar 

  4. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, and Supercapacitors, Hoboken, New Jersey: Wiley, 2015.

    Google Scholar 

  5. Huang, Y., Liu, W., Kan, S., Liu, P., Hao, R., Hu, H., Zhang, J., Liu, H., Liu, M., and Liu, K., Int. J. Hydrogen Energy, 2020, vol. 45, p. 6380.

    Article  CAS  Google Scholar 

  6. Sui, S., Wang, X., Zhou, X., Su, Y., Riffat, S., and Liu, C., J. Mater. Chem. A, 2017, vol. 5, p. 1808.

    Article  CAS  Google Scholar 

  7. Zhang, J., Mo, Y., Vukmirovic, M.B., Klie, R., Sasaki, K., and Adzic, R.R., J. Phys. Chem. B, 2004, vol. 108, p. 10955.

    Article  CAS  Google Scholar 

  8. Sharma, S. and Pollet, B.G., J. Power Sources, 2012, vol. 208, p. 96.

    Article  CAS  Google Scholar 

  9. Görlin, M., Ferreira de Araújo, J., Schmies, H., Bernsmeier, D., Dresp, S., Gliech, M., Jusus, Z., Chernev, P., Kraehnert, R., Dau, H., and Strasser, P., J. Am. Chem. Soc., 2017, vol. 139, p. 2070.

    Article  Google Scholar 

  10. Zhang, Y., Wang, Y., Huang, J., Han, C., and Zang, J., Int. J. Hydrogen Energy, 2020, vol. 45, p. 6529.

    Article  CAS  Google Scholar 

  11. Zaragoza-Martín, F., Sopena-Escario, D., and Morallon, E., Salinas-Martínez de Lecea, C., J. Power Sources, 2007, vol. 171, p. 302.

    Article  Google Scholar 

  12. Stevanovic, S.I., Panic, V.V., Dekanski, A.B., Tripkovic, A.V., and Jovanovic, V.M., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 9475.

    Article  CAS  Google Scholar 

  13. Dong, L., Gari, R.S., Li, Z., Craig, M.M., and Hou, S., Carbon, 2010, vol. 48, p. 781.

    Article  CAS  Google Scholar 

  14. Wang, C., Li, H., Zhao, J., Zhu, Y., Yuan, W.Z., and Zhang, Y., Int. J. Hydrogen Energy, 2013, vol. 38, p. 13230.

    Article  CAS  Google Scholar 

  15. Sosenkin, V.E., Aleksenko, A.E., Rychagov, A.Yu., Mayorova, N.A., Ovchinnikov-Lazarev, M.A., Spitsyn, B.V., and Vol’fkovich, Yu.M., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 646.

    Article  CAS  Google Scholar 

  16. Bo, X. and Guo, L., Electrochim. Acta, 2013, vol. 90, p. 283.

    Article  CAS  Google Scholar 

  17. Chen, W., Xin, Q., Sun, G., Wang, Q., Mao, Q., and Su, H., J. Power Sources, 2008, vol. 180, p. 199.

    Article  CAS  Google Scholar 

  18. Mikhaylova, A.A., Tusseeva, E.K., Mayorova, N.A., Rychagov, A.Yu., Volfkovich, Yu.M., Krestinin, A.V., and Khazova, O.A., Electrochim. Acta, 2011, vol. 56, p. 3656.

    Article  CAS  Google Scholar 

  19. Calvillo, L., Celorrio, V., Moliner, R., and Lazaro, M.J., Mater. Chem. Phys., 2011, vol. 127, p. 335.

    Article  CAS  Google Scholar 

  20. Volfkovich, Yu.M. and Sosenkin, V.E., Russ. Chem. Rev., 2012, vol. 81, p. 936.

    Article  Google Scholar 

  21. Baskakov, S.A., Baskakova, Y.V., Kabachkov, E.N., Dremova, N.N., Michtchenko, A., and Shulga, Yu.M., ACS Appl. Mater. Interfaces, 2019, vol. 35, p. 32517.

    Article  Google Scholar 

  22. Boinovich, L.B. and Emelyanenko, A.M., Russ. Chem. Rev., 2008, vol. 77, p. 583.

    Article  CAS  Google Scholar 

  23. http://www.ras.ru/news/shownews.aspx?id=b53dad2c-d02c-44b3-8955-305136cb8a30.

  24. Volfkovich, Yu.M., Sosenkin, V.E., Mayorova, N.A., Rychagov, A.Y., Baskakov, S.A., Kabachkov, E.N., Korepanov, V.I., Dremova, N.N., Baskakova, Y.V., and Shulga, Yu.M., Energy Fuels, 2020, vol. 34, p. 7573.

    Article  CAS  Google Scholar 

  25. Bagotzky, V.S., J. Power Sources, 1994, vol. 48, p. 339.

    Article  Google Scholar 

  26. Volfkovich, Yu.M., Blinov, I.A., and Sakar, A., US Patent 7059175, 2006.

  27. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Pure Appl. Chem., 2012, vol. 84, p. 107.

    Article  CAS  Google Scholar 

  28. William, S., Hummers, J.R., and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  Google Scholar 

  29. Shulga, Yu.M., Baskakov, S.A., Smirnov, V.A., Shulga, N.Yu., Belay, K.G., and Gutsev, G.L., J. Power Sources, 2014, vol. 245, p. 33.

    Article  CAS  Google Scholar 

  30. Baskakov, S.A., Baskakova, Y.V., Lyskov, N.V., Dremova, N.N., Irzhak, A.V., Kumar, Y., Michtchenko, A., and Shulga, Y.M., Electrochim. Acta, 2018, vol. 260, p. 557.

    Article  CAS  Google Scholar 

  31. Wenzel, R.N., Ind. Eng. Chem., 1936, vol. 28, p. 988.

    Article  CAS  Google Scholar 

  32. Shulga, Y.M., Melezhik, A.V., Kabachkov, E.N., Milovich, F.O., Lyskov, N.V., Irzhak, A.V., Dremova, N.N., Gutsev, G.L., Michtchenko, A., Tkachev, A.G., and Kumar, Y., Appl. Phys. A, 2019, vol. 125, p. 460.

    Article  Google Scholar 

  33. Gupta, R.K., Malviya, M., Ansari, K.R., Lgaz, H., Chauhan, D.S., and Quraishi, M.A., Mater. Chem. Phys., 2019, vol. 236, artic. no. 121727.

  34. Wu, C.-K., Chem. Phys. Lett., 1973, vol. 21, p. 153.

    Article  CAS  Google Scholar 

  35. Gruger, A., Regis, A., Schmatko, T., and Colomban, P., Vib. Spectrosc., 2001, vol. 26, p. 215.

    Article  CAS  Google Scholar 

  36. Pimenta, M.A. and Dresselhaus, G., Annu. Rep. Prog. Chem. Sect. C: Phys. Chem., 2007, vol. 9, p. 1276.

    CAS  Google Scholar 

  37. Brown, R.G., J. Chem. Phys., 1964, vol. 40, p. 2900.

    Article  CAS  Google Scholar 

  38. Volfkovich, Yu.M., Lobach, A.S., Spitsyna, N.G., Baskakov, S.A., Sosenkin, V.E., Rychagov, A.Yu., Kabachkov, E.N., and Shulga, Yu.M., J. Porous Mater., 2019, vol. 26, p. 1111.

    Article  CAS  Google Scholar 

  39. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, New York: Academic Press, 1967.

    Book  Google Scholar 

  40. Eikerling, M., Kharkats, Y.I., Kornyshev, A.A., and Volfkovich, Y.M., J. Electrochem. Soc., 1998, vol. 145, p. 2684.

    Article  CAS  Google Scholar 

  41. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, London: Wiley, 2001.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Analytical Center for Collective Use of the Institute of Problems of Chemical Physics of the Russian Academy of Sciences, and Chernogolovka Research Center and partly implemented using the resources of the Center of Competences of National Technological Initiative of the Institute of Problems of Chemical Physics, Russian Academy of Sciences.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State tasks АААА-А19-119041890032-6, АААА-А19-119032690060-9, and АААА-А19-119061890019-5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. M. Volfkovich or Y. M. Shulga.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volfkovich, Y.M., Sosenkin, V.E., Maiorova, N.A. et al. Graphene-Based Aerogels Possessing Superhydrophilic and Superhydrophobic Properties and Their Application for Electroreduction of Molecular Oxygen. Colloid J 83, 284–293 (2021). https://doi.org/10.1134/S1061933X21030157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21030157

Navigation