Skip to main content
Log in

Influence of Relative Air Humidity on Evaporation of Water–Ethanol Solution Droplets

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Evaporation of droplets of water–ethanol solutions with different concentrations has been experimentally studied at different relative humidities of ambient air. High-speed micrography has been employed to monitor the dynamics of variations in the sizes of the evaporating droplets. It has been found that relative humidity of the ambient air significantly affects variations in the diameters of water–ethanol solution droplets. Infrared thermography has been used to study variations in the temperature of the evaporating droplets. It has been shown that the temperature of the evaporating droplets decreases with an increase in ethanol concentration at all studied relative air humidities. The minimum values of evaporating droplet surface temperature and evaporation time increase with relative air humidity. The performed generalization of the obtained experimental data may be used when calculating the heat and mass transfer of evaporating droplets of water–ethanol solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Chandra, S., Di Marzo, M., Qiao, Y.M., and Tartarini, P., Fire Saf. J., 1996, vol. 27, p. 141.

    Article  CAS  Google Scholar 

  2. Sefiane, K., David, S., and Shanahan, M.E.R., J. Phys. Chem. B, 2008, vol. 112, p. 11317.

    Article  CAS  Google Scholar 

  3. Zhang, H. and Law, C.K., Combust. Flame, 2008, vol. 153, p. 593.

    Article  CAS  Google Scholar 

  4. Saverchenko, V.I., Fisenko, S.P., and Khodyko, Yu.A., Colloid J., 2015, vol. 77, p. 71.

    Article  CAS  Google Scholar 

  5. Kuchma, A.E., Esipova, N.E., Mikheev, A.A., Shchekin, A.K., and Itskov, S.V., Colloid J., 2017, vol. 79, p. 779.

    Article  CAS  Google Scholar 

  6. Kuznetsov, G.V., Feoktistov, D.V., and Orlova, E.G., Thermophys. Aeromech., 2016, vol. 23, p. 17.

    Article  Google Scholar 

  7. Sefiane, K., Tadrist, L., and Douglas, M., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 4527.

    Article  CAS  Google Scholar 

  8. Cheng, A.K.H., Soolaman, D.M., and Yu, H.Z., J. Phys. Chem. B, 2006, vol. 110, p. 11267.

    Article  CAS  Google Scholar 

  9. Shi, L., Shen, P., Zhang, D., Lin, Q., and Jiang, Q., Surf. Interface Anal., 2009, vol. 41, p. 951.

    Article  CAS  Google Scholar 

  10. Hallett, W.L.H. and Beauchamp-Kiss, S., Fuel, 2010, vol. 89, p. 2496.

    Article  CAS  Google Scholar 

  11. Terekhov, V.I. and Shishkin, N.E., Polzunovskii Vestn., 2010, no. 1, p. 55.

  12. Han, K., Song, G., Ma, X., and Yang, B., Appl. Thermal Eng., 2016, vol. 101, p. 568.

    Article  CAS  Google Scholar 

  13. Bochkareva, E.M., Terekhov, V.V., Nazarov, A.D., and Miskiv, N.B., J. Phys.: Conf. Ser., 2017, vol. 891, artic. no. 012010.

  14. Al Qubeissi, M., Al-Esawi, N., Sazhin, S.S., and Ghaleeh, M., Energy Fuels, 2018, vol. 32, p. 6498.

    Article  CAS  Google Scholar 

  15. Liu, C., Bonaccurso, E., and Butt, H.J., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 7150.

    Article  CAS  Google Scholar 

  16. Kuchma, A.E., Esipova, N.E., Shchekin, A.K., and Itskov, S.V., Colloid J., 2018, vol. 80, p. 640.

    Article  CAS  Google Scholar 

  17. Oztürk, T. and Erbil, H.Y., Colloids Surf. A, 2018, vol. 553, p. 327.

    Article  Google Scholar 

  18. Borodulin, V.Yu., Letushko, V.N., Nizovtsev, M.I., and Sterlyagov, A.N., Colloid J., 2019, vol. 81, p. 219.

    Article  CAS  Google Scholar 

  19. Borodulin, V.Y., Nizovtsev, M.I., and Sterlyagov, A.N., J. Phys.: Conf. Ser., 2019, vol. 1382, artic. no. 012106.

  20. Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., and Sterlyagov, A.N., Int. J. Heat Mass Transfer, 2017, vol. 109, p. 609.

    Article  CAS  Google Scholar 

  21. Levashov, V.Yu. and Kryukov, A.P., Colloid J., 2017, vol. 79, p. 647.

    Article  CAS  Google Scholar 

  22. Terekhov, V.I. and Shishkin, N.E., Thermophys. Aeromech., 2009, vol. 16, p. 239.

    Article  Google Scholar 

Download references

Funding

Experimental measurement procedures were developed within the framework of the State assingment to the Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences. Experimental studies were supported by megagrant no. 2020-220-08-1436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sterlyagov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I. et al. Influence of Relative Air Humidity on Evaporation of Water–Ethanol Solution Droplets. Colloid J 83, 277–283 (2021). https://doi.org/10.1134/S1061933X21030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21030029

Navigation