Skip to main content
Log in

Three-Stage Evolution of the Structure and the Effect of Nonadditive Hardening of Layered Composites of Amorphous Alloys under High-Pressure Torsion

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The local chemical composition of composites consisting of alternating layers of Co28.2Fe38.9Cr15.4Si0.3B17.2 and Fe53.9Ni26.5B20.2 amorphous alloys subjected to torsion with increasing number of revolutions (true plastic strain) at high quasihydrostatic pressure in a Bridgman anvil cell is studied by time-of-flight mass spectroscopy. Three-stage transformation of the structure of composites with an increase in the strain is revealed. It is found that the average microhardness of the composite at a certain stage of machining exceeds the microhardness of its individual amorphous alloy components. The nature of the observed effects is discussed in terms of the features inherent in severe plastic deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. M. Glezer and I. E. Permyakova, Melt-Quenched Nanocrystals (CRC, Boca Raton, FL, 2013).

    Book  Google Scholar 

  2. D. V. Louzguine-Luzgin, L. V. Louzguina-Luzgina, and A. Y. Churyumov, Metals 3, 1 (2013).

    Article  Google Scholar 

  3. H. F. Tan, B. Zhang, Y. K. Yang, X. F. Zhu, and G. P. Zhang, Mater. Des. 90, 60 (2016).

    Article  Google Scholar 

  4. J. Li, H. Chen, H. Feng, Q. Fang, Y. Liu, F. Liu, H. Wu, and P. K. Liaw, J. Mater. Sci. Technol. 54, 14 (2020).

    Article  Google Scholar 

  5. W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, and Y. Qin, J. Therm. Spray Technol. 23, 1157 (2014).

    Article  ADS  Google Scholar 

  6. B. B. Straumal, A. R. Kilmametov, A. A. Mazilkin, S. G. Protasova, K. I. Kolesnikova, P. B. Straumal, and B. Baretzky, Mater. Lett. 145, 63 (2015).

    Article  Google Scholar 

  7. S. V. Ketov, Y. P. Ivanov, D. Sopu, T. Schöberl, J. Eckert, D. V. Louzguine-Luzgin, C. Suryanarayana, A. O. Rodin, and A. L. Greer, Mater. Today Adv. 1, 100004 (2019).

    Article  Google Scholar 

  8. D. B. Miracle and O. N. Senkov, Acta Mater. 122, 448 (2017).

    Article  ADS  Google Scholar 

  9. V. Dolique, A. L. Thomann, and P. Brault, IEEE Trans. Plasma Sci. 39, 2478 (2011).

    Article  ADS  Google Scholar 

  10. I. E. Permyakova, A. M. Glezer, A. A. Ivanov, and A. V. Shelyakov, Russ. Phys. J. 58, 1331 (2016).

    Article  Google Scholar 

  11. N. N. Sitnikov, A. V. Shelyakov, I. A. Khabibullina, and K. A. Borodako, Bull. Russ. Acad. Sci.: Phys. 82, 1136 (2018).

    Article  Google Scholar 

  12. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  13. M. I. Alymov, Powder Metallurgy of Nanocrystalline Materials (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  14. P. R. Soni, Mechanical Alloying: Fundamentals and Application (Cambridge Int. Sci., Cambridge, UK, 1999).

    Google Scholar 

  15. R. V. Sundeev, A. V. Shalimova, N. N. Sitnikov, O. P. Chernogorova, A. M. Glezer, M. Yu. Presnyakov, I. A. Karataev, E. A. Pechina, and A. V. Shelyakov, J. Alloys Compd. 845, 156273 (2020).

    Article  Google Scholar 

  16. S. V. Vasiliev, A. I. Limanovskii, V. M. Tkachenko, T. V. Tsvetkov, K. A. Svyrydova, V. V. Burkhovetskii, V. N. Sayapin, S. V. Terekhov, and V. I. Tkatch, Mater. Today Commun. 24, 101080 (2020).

    Article  Google Scholar 

  17. Y. Cao, M. Kawasaki, Y. B. Wang, S. N. Alhajeri, X. Z. Liao, W. L. Zheng, S. P. Ringer, Y. T. Zhu, and T. G. Langdon, J. Mater. Sci. 45, 4545 (2010).

    Article  ADS  Google Scholar 

  18. M. Kawasaki and T. G. Langdon, Mater. Sci. Eng. A 498, 341 (2008).

    Article  Google Scholar 

  19. R. Kulagin, Y. Beygelzimer, Yu. Ivanisenko, A. Ma-zilkin, B. Straumal, and H. Hahn, Mater. Lett. 222, 172 (2018).

    Article  Google Scholar 

  20. G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, S. N. Sergeev, R. U. Shayachmetov, G. R. Khalikova, J. A. Baimova, A. M. Glezer, and R. R. Mulyukov, Mater. Lett. 253, 412 (2019).

    Article  Google Scholar 

  21. Y. Beygelzimer, Mater. Sci. Forum 683, 213 (2011).

    Article  Google Scholar 

  22. J. Bokeloh, S. V. Divinski, G. Reglitz, and G. Wilde, Phys. Rev. Lett. 107, 23550 (2011).

    Google Scholar 

  23. B. Kantor and R. V. Kan, in Amorphous Metallic Alloys, Ed. by F. T. Luborsky (Butterworths, London, UK, 1983), Chap. 25, p. 487.

    Google Scholar 

  24. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, Hoboken, NJ, 2013).

    Book  Google Scholar 

  25. A. M. Glezer, E. V. Kozlov, N. A. Koneva, N. A. Popova, and I. A. Kurzina, Plastic Deformation of Nanostructured Materials (CRC, Boca Raton, FL, 2017), p. 208.

    Book  Google Scholar 

  26. D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (MISiS, Moscow, 2005) [in Russian].

  27. B. B. Straumal, A. R. Kilmametov, A. A. Mazilkin, A. Korneva, P. Zieba, and B. Baretzky, JETP Lett. 110, 624 (2019).

    Article  ADS  Google Scholar 

  28. F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H. R. Schober, S. K. Sharma, and H. Teichler, Rev. Mod. Phys. 75, 237 (2003).

    Article  ADS  Google Scholar 

  29. A. G. Kesarev, V. V. Kondrat’ev, and I. L. Lomaev, Phys. Met. Metallogr. 118, 872 (2017).

    Article  ADS  Google Scholar 

  30. J. Horváth and H. Mehrer, Cryst. Latt. Def. Amorph. Mater. 13, 1 (1986).

    Google Scholar 

  31. P. Scharwaechter, W. Frank, and H. Kronmueller, Z. Metallkd. 87, 885 (1996).

    Google Scholar 

  32. A. E. Ermakov, V. L. Gapontsev, V. V. Kondrat’ev, and Yu. N. Gornostyrev, Phys. Met. Metallogr. 88, 211 (1999).

    Google Scholar 

  33. V. V. Kondratyev, A. G. Kesarev, and I. L. Lomaev, Diffus. Found. 5, 129 (2015).

    Article  Google Scholar 

  34. V. L. Gapontsev and V. V. Kondrat’ev, Dokl. Phys. 47, 576 (2002).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-08-00341-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Permyakova.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permyakova, I.E., Glezer, A.M., Kovalev, A.I. et al. Three-Stage Evolution of the Structure and the Effect of Nonadditive Hardening of Layered Composites of Amorphous Alloys under High-Pressure Torsion. Jetp Lett. 113, 471–476 (2021). https://doi.org/10.1134/S0021364021070080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021070080

Navigation