Skip to main content
Log in

Phospholipases C from the Genus Bacillus: Biological Role, Properties, and Fields of Application

  • REVIEW ARTICLE
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

Phospholipases are enzymes of the class of hydrolases that catalyze the cleavage of bonds in phospholipids; they are found in almost all organisms. Enzymes of microbial origin are of the greatest interest. The popularity of bacterial enzymes is due to their huge variety and technological properties: high specific activity, thermal stability, and wide substrate specificity. The production of recombinant bacterial phospholipases and their improvement remain an urgent task, for which it is necessary to deepen and systematize knowledge about the enzymes of this group. This review describes the properties, structure, and mode of action of bacterial phospholipases C, which are widely used in various areas of human practice: scientific research, medicine, food, chemical industry, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Aloulou, A., Ali, Y.B., Bezzine, S., Gargouri, Y., and Gelb, M.H., Methods Mol. Biol., 2012, vol. 861, pp. 63–85. https://doi.org/10.1007/978-1-61779-600-5_4

    Article  CAS  PubMed  Google Scholar 

  2. Litvinko, N.M., Izv. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauk, 2015, no. 4, pp. 109–121.

  3. Ulbrich-Hofmann, R., ChemBioChem, 2012, vol. 13, pp. 2148–2149. https://doi.org/10.1002/cbic.201200542

    Article  CAS  Google Scholar 

  4. Fil'kin, C.Yu., Lipkin, A.V., and Fedorov, A.N., Usp. Biol. Khim., 2020, no. 60, pp. 369–410.

  5. Borrelli, G.M. and Trono, D., Int. J. Mol. Sci., 2015, vol. 16, pp. 20774–20840. https://doi.org/10.3390/ijms160920774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Titball, R.W., Symp. Ser. Soc. Appl. Microbiol., 1998, vol. 27, p. 127.

    Google Scholar 

  7. Ramenskaia, G.V., Melnik, E.V., and Petukhov, A.E., Biomed. Khim., 2018, vol. 64, pp. 84–93. https://doi.org/10.18097/PBMC20186401084

    Article  CAS  PubMed  Google Scholar 

  8. Titball, R.W., Microbiol. Rev., 1993, vol. 57, pp. 347–366.

    Article  CAS  Google Scholar 

  9. Songer, J.G., Trends Microbiol., 1997, vol. 5, pp. 156–161.

    Article  CAS  Google Scholar 

  10. Scandella, C.J. and Kornberg, A., Biochemistry, 1971, vol. 10, pp. 4447–4456.

    Article  CAS  Google Scholar 

  11. Richmond, G.S. and Smith, T.K., Int. J. Mol. Sci., 2011, vol. 12, pp. 588–612. https://doi.org/10.3390/ijms12010588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murayama, K., Kano, K., Matsumoto, Y., and Sugimori, D., J. Struct. Biol., 2013, vol. 182, pp. 192–196. https://doi.org/10.1016/j.jsb.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  13. Bakholdina, S.I., Tischenko, N.M., Sidorin, E.V., Isaeva, M.P., Likhatskaya, G.N., Dmitrenok, P.S., Kim, N.Yu., Chernikov, O.V., and Solov’eva, T.F., Biochemistry, 2016, vol. 81, pp. 47–57. https://doi.org/10.1134/s0006297916010053

    Article  CAS  PubMed  Google Scholar 

  14. Hanahan, D.J., Brockerhoff, H., and Barron, E.J., J. Biol. Chem., 1960, vol. 235, pp. 1917–1923.

    Article  CAS  Google Scholar 

  15. Ishiwata, S., Dainihon Sanshi Kaiho, 1901, vol. 114, pp. 1–5.

    Google Scholar 

  16. Kohler, G.A., Brenot, A., Haas-Stapleton, E., Agabian, N., Deva, R., and Nigam, S., Biochim. Biophys. Acta, 2006, vol. 1761, pp. 1391–1399. https://doi.org/10.1016/j.bbalip.2006.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito, K., Sugatani, J., and Okumura, T., Methods Enzymol., 1991, vol. 197, pp. 446–456. https://doi.org/10.1016/0076-6879(91)97170-4

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, F., Huang, S., Imadad, K., and Li, C., Bioresour. Technol., 2012, vol. 104, pp. 518–522. https://doi.org/10.1016/j.biortech.2011.09.112

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto, Y., Mineta, S., Murayama, K., and Sugimori, D., FEBS J., 2013, vol. 280, pp. 3780–3796. https://doi.org/10.1111/febs.12366

    Article  CAS  PubMed  Google Scholar 

  20. Masayama, A., Kato, S., Terashima, T., Molgaard, A., Hhemmi, H., Yoshimura, T., and Moriyama, R., Biosci. Biotechnol. Biochem., 2010, vol. 74, pp. 24–30. https://doi.org/10.1271/bbb.90391

    Article  CAS  PubMed  Google Scholar 

  21. Taguchi, R. and Ikezawa, H., Arch. Biochem. Biophys., 1978, vol. 186, pp. 196–201.

    Article  CAS  Google Scholar 

  22. Djordjevic, J.T., Front. Microbiol., 2010, vol. 1, pp. 1–13. https://doi.org/10.3389/fmicb.2010.00125

    Article  CAS  Google Scholar 

  23. Pokotylo, I., Pejchar, P., Potocký, M., Kocourková, D., Krčková, Z., Ruelland, E., Kravets, V., and Martinec, J., Prog. Lipid Res., 2013, vol. 52, pp. 62–79. https://doi.org/10.1016/j.plipres.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  24. Ivinskene, V.L., Entomopatogennye bakterii i ikh rol' v zashchite rastenii: sbornik nauchnykh trudov (Entomopathogenic Bacteria and Their Role in Plant Protection: Collection of Scientific Articles), Novosibirsk: VASKhNIL, Sib. Otd., 1987, pp. 57–75.

  25. Ikezawa, H., Nakabayashi, T., Suzuki, K., Nakajima, M., Taguchi, T., and Taguchi, R., J. Biochem., 1983, vol. 93, pp. 1717–1719. https://doi.org/10.1093/oxfordjournals.jbchem.a134315

    Article  CAS  PubMed  Google Scholar 

  26. Volwerk, J.J., Koke, J.A., Wetherwax, P.B., and Griffith, O.H., FEMS Microbiol. Lett., 1989, vol. 61, pp. 237–241. https://doi.org/10.1111/j.1574-6968.1989.tb03629.x

    Article  CAS  Google Scholar 

  27. Jenkins, M.G. and Frohman, M.A., Cell. Mol. Life Sci., 2005, vol. 62, pp. 2305–2316. https://doi.org/10.1007/s00018-005-5195-z

    Article  CAS  PubMed  Google Scholar 

  28. Selvy, P.E., Lavieri, R.R., Lindsley, C.W., and Brown, H.A., Chem. Rev., 2011, vol. 111, pp. 6064–6119. https://doi.org/10.1021/cr200296t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakurai, J., Nagahama, M., and Oda, M., J. Biochem., 2004, vol. 136, pp. 569–574. https://doi.org/10.1093/jb/mvh161

    Article  CAS  PubMed  Google Scholar 

  30. González-Bulnes, P., González-Roura, A., Canals, D., Delgado, A., Casas, J., and Llebaria, A., Bioorg. Med. Chem., 2010, vol. 18, pp. 8549–8555. https://doi.org/10.1016/j.bmc.2010.10.031

    Article  CAS  PubMed  Google Scholar 

  31. Otnaess, A.-B., Little, C., Sletten, K., Wallin, R., Johnsen, S., Flengsrud, R., and Prydz, H., Eur. J. Biochem., 1977, vol. 79, pp. 459–468. https://doi.org/10.1111/j.1432-1033.1977.tb11828.x

    Article  CAS  PubMed  Google Scholar 

  32. Elleboudy, N.S., Aboulwafa, M.M., and Hassouna, N.A., Asian Pacific J. Trop. Med., 2014, vol. 7, pp. 860–866. https://doi.org/10.1016/s1995-7645(14)60150-4

    Article  CAS  Google Scholar 

  33. Hough, E., Hansen, L.K., Birknes, B., Jynge, K., Hansen, S., Hordvik, A., Little, C., Dodson, E., and Derewenda, Z., Nature, 1989, vol. 338, pp. 357–360. https://doi.org/10.1038/338357a0

    Article  CAS  PubMed  Google Scholar 

  34. Rose, A.S., Bradley, A.R., Valasatava, Y., Duarte, J.M., Prlić, A., and Rose, P.W., in Proceedings of the 21st International Conference on Web3D Technology— Web3D’16, 2016, pp. 185–186. https://doi.org/10.1145/2945292.2945324

  35. Rose, A.S. and Hildebrand, P.W., Nucleic Acids Res., 2015, vol. 43, pp. W576–W579. https://doi.org/10.1093/nar/gkv402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beecher, D.J. and Wong, A.C.L., Microbiology, 2000, vol. 146, pp. 3033–3039. https://doi.org/10.1099/00221287-146-12-3033

    Article  CAS  PubMed  Google Scholar 

  37. Lyu, Y., Ye, L., Xu, J., Yang, X., Chen, W., and Yu, H., Biotechnol. Lett., 2016, vol. 38, pp. 23–31. https://doi.org/10.1007/s10529-015-1962-6

    Article  CAS  PubMed  Google Scholar 

  38. Antikainen, N.M., Hergenrother, P.J., Harris, M.M., Corbett, W., and Martin, S.F., Biochemistry, 2003, vol. 42, pp. 1603–1610. https://doi.org/10.1021/bi0267285

    Article  CAS  PubMed  Google Scholar 

  39. Shinitzky, M., Friedman, P., and Haimovitz, R., J. Biol. Chem., 1993, vol. 268, pp. 14109–14115.

    Article  CAS  Google Scholar 

  40. El-Sayed, M.Y., DeBose, C.D., Coury, L.A., and Roberts, M.F., Biochim. Biophys. Acta, 1985, vol. 837, pp. 325–335. https://doi.org/10.1016/0005-2760(85)90056-6

    Article  CAS  PubMed  Google Scholar 

  41. Martin, S.F., Follows, B.C., Hergenrother, P.J., and Trotter, B.K., Biochemistry, 2000, vol. 39, pp. 3410–3415. https://doi.org/10.1021/bi9919798

    Article  CAS  PubMed  Google Scholar 

  42. Snyder, W.R., Biochim. Biophys. Acta, 1987, vol. 920, pp. 155–160.

    Article  CAS  Google Scholar 

  43. Benfield, A.P., Goodey, N.M., Phillips, L.T., and Martin, S.F., Arch. Biochem. Biophys., 2007, vol. 460, pp. 41–47.

    Article  CAS  Google Scholar 

  44. Burley, S.K. and Petsko, G.A., Adv. Protein Chem., 1988, vol. 39, pp. 125–189. https://doi.org/10.1016/s0065-3233(08)60376-9

    Article  CAS  PubMed  Google Scholar 

  45. Dougherty, D.A., Science, 1996, vol. 271, pp. 163–168. https://doi.org/10.1126/science.271.5246.163

    Article  CAS  PubMed  Google Scholar 

  46. Celandroni, F., Salvetti, S., Senesi, S., and Ghelardi, E., FEMS Microbiol. Lett., 2014, vol. 361, pp. 95–103. https://doi.org/10.1111/1574-6968.12615

    Article  CAS  PubMed  Google Scholar 

  47. Sundell, S., Hansen, S., and Hough, E., Protein Eng., 1994, vol. 7, pp. 571–577. https://doi.org/10.1093/protein/7.4.571

    Article  CAS  PubMed  Google Scholar 

  48. Liao, R.Z., Yu, J.G., and Himo, F., Phys. Chem., vol. 114, pp. 2533–2540. https://doi.org/10.1021/jp910992f

  49. Martin, S.F., Spaller, M.R., and Hergenrother, P.J., Biochemistry, 1996, vol. 35, pp. 12970–12977. https://doi.org/10.1021/bi961316

    Article  CAS  PubMed  Google Scholar 

  50. Seo, K.H. and Rhee, J.I., Biotechnol. Lett., 2004, vol. 26, pp. 1475–1479. https://doi.org/10.1023/b:bile.0000044447.15205.90

    Article  CAS  PubMed  Google Scholar 

  51. Durban, M.A., Silbersack, J., Schweder, T., Schauer, F., and Bornscheuer, U.T., Appl. Microbiol. Biotechnol., 2007, vol. 74, pp. 634–639. https://doi.org/10.1007/s00253-006-0712-z

    Article  CAS  PubMed  Google Scholar 

  52. Kent, C., Evers, A., and Haun, S.S.L., Arch. Biochem. Biophys., 1986, vol. 250, pp. 519–525.

    Article  CAS  Google Scholar 

  53. Parkinson, E.K., Carcinogenes, 1987, vol. 8, pp. 857–860. https://doi.org/10.1093/carcin/8.6.857

    Article  CAS  Google Scholar 

  54. Shimanouchi, T., Kawasaki, H., Fuse, M., Umakoshi, H., and Kuboi, R., Colloids Surf. B: Biointerfaces, 2013, vol. 103, pp. 75–83.

    Article  CAS  Google Scholar 

  55. Mounts, T.L. and Nash, A.M., J. Am. Oil Chem. Soc., 1990, vol. 67, pp. 757–760. https://doi.org/10.1007/bf02540486

    Article  CAS  Google Scholar 

  56. De Maria, L., Vind, J., Oxenboll, K.M., Svendsen, A., and Patkar, S., Appl. Microbiol. Biotechnol., 2007, vol. 74, pp. 290–300. https://doi.org/10.1007/s00253-006-0775-x

    Article  CAS  PubMed  Google Scholar 

  57. Cesarini, S., Haller, R.F., Diaz, P., and Nielsen, P.M., Biotechnol. Biofuels, 2014, vol. 7, pp. 1–12. https://doi.org/10.1186/1754-6834-7-29

    Article  Google Scholar 

  58. Casado, V., Martin, D., Torres, C., and Reglero, G., Lipases and Phospholipases: Methods and Protocols, New York: Springer, 2012, vol. 861, pp. 495–523.

    Google Scholar 

  59. Arrigo, P.D. and Servi, S., Trends Biotechnol., 1997, vol. 15, pp. 90–96. https://doi.org/10.1016/s0167-7799(97)01012-3

    Article  Google Scholar 

  60. Schümperli, M., Pellaux, R., and Panke, S., Appl. Microbiol. Biotechnol., 2007, vol. 75, pp. 33–45. https://doi.org/10.1007/s00253-007-0882-3

    Article  CAS  PubMed  Google Scholar 

  61. Morigaki, E., Miura, Y., Takahata, K., Tada, M., Nakajima, S., and Baba, N., J. Chem. Res., 1998, vol. 12, pp. 774–775. https://doi.org/10.1039/a804770g

    Article  Google Scholar 

  62. Anthonsen, T., D’Arrigo, P., Pedrocchi-Fantoni, G., Secundo, F., Servi, S., and Sundby, E., J. Mol. Catal., 1999, vol. 6, pp. 125–132. https://doi.org/10.1016/s1381-1177(98)00141-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic number FZMW-2020-0002, “Development of producers of recombinant enzymes for cheese making”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Chirkova.

Ethics declarations

This article does not contain a description of any research carried out by the authors of this work, with the participation of humans and animals as objects.

Conflict of Interests

The authors declare they have no conflict of interest.

Additional information

Abbreviations: PL, phospholipase; PLA1, phospholipase A1; PLA2, phospholipase A2; PLB, phospholipase B; PLC, phospholipase C; PLD, phospholipase D.

Corresponding author: phone: +7 (913) 218-47-06.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkulyeva, Y.A., Shcherbakov, D.N., Sharlaeva, E.A. et al. Phospholipases C from the Genus Bacillus: Biological Role, Properties, and Fields of Application. Russ J Bioorg Chem 47, 653–659 (2021). https://doi.org/10.1134/S1068162021030134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021030134

Keywords:

Navigation