Skip to main content
Log in

Studies of the Processes of the Trypsin Interactions with Ion Exchange Fibers and Chitosan

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A localization of charged and hydrophobic amino acid residues in the trypsin molecule was studied, and a percentage of the amino acids of different types on a surface of the enzyme globule was determined. The charged and hydrophobic amino acid residues were shown to be irregularly distributed on the protein surface and to form local clusters. The VION KN-1 and VION AN-1 fibers and chitosan were found to be promising carriers for the trypsin immobilization, because an adsorption on these fibers provided the preservation of 54, 58 and 65% of the catalytic activity of the native enzyme in solution, respectively (measured according to the hydrolysis rate of the bovine serum albumin). The IR spectra of the native (free) enzyme and the enzyme immobilized on the polymeric supports were analyzed. Electrostatic interactions and hydrogen bonds were shown to be dominant during the trypsin adsorption on the VION fibers. Carboxyl groups of the VION KN-1 interacted with positively charged regions of the molecule which contained His, Lys, and Arg. A large number of amino groups of the VION AN-1 and chitosan created an excessive positive charge which, possibly, provided a binding to the negatively charged Asp and Glu. However, hydrophobic interactions in which Gly, Ala, Tyr, Val, Phe, Pro, and Leu were involved became the most important for the trypsin adsorption on chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Mosolov, V.V., Proteoliticheskie fermenty (Proteolytic Enzymes), Moscow: Nauka, 1971.

  2. Ladisch, M.R. and Kohlmann, K.L.J., Biotechnol. Prog., 1992, vol. 8, pp. 469–478. https://doi.org/10.1021/bp00018a001

    Article  CAS  PubMed  Google Scholar 

  3. Pereira, H.J., Salgado, M.C., and Oliveira, E.B., J. Chromotogr. B: Analyt. Technol. Biomed. Life Sci., 2009, vol. 22, pp. 2039–2044. https://doi.org/10.1016/j.jchromb.2009.05.036

    Article  CAS  Google Scholar 

  4. Wu, P., J. Biol. Chem., 2010, vol. 391, pp. 283–293. https://doi.org/10.1515/bc.2010.030

    Article  CAS  Google Scholar 

  5. Torbica, A.M., J. Agric. Food Chem., 2010, vol. 58, pp. 7980–7985. https://doi.org/10.1021/jf100830m

    Article  CAS  PubMed  Google Scholar 

  6. Noguchi, H., J. Cell Transplant., 2009, vol. 18, pp. 541–547. https://doi.org/10.1177/096368970901805-609

    Article  Google Scholar 

  7. Walsh, K.A., Methods Enzymol., 1970, vol. 19, pp. 41–63. https://doi.org/10.1016/0076-6879(70)19006-9

    Article  Google Scholar 

  8. Perera, E., Rodríguez-Viera, L., Perdomo-Morales, R., Montero-Alejo, V., Moyano, F.J., Martínez-Rodríguez, G., and Mancera, J.M., J. Comp. Physiol. B, 2015, vol. 185, pp. 17–35. https://doi.org/10.1007/s00360-014-0851-y

    Article  CAS  PubMed  Google Scholar 

  9. Muhlia-Almazan, A., Sanchez-Paz, A., and García-Carreno, F.L., J. Comp. Physiol. B, 2008, vol. 178, pp. 655–672. https://doi.org/10.1007/s00360-008-0263-y

    Article  PubMed  Google Scholar 

  10. Sukhanova, S.M., Petruchuk, E.M., and Generalov, A.A., Biopreparaty. Profilakt., Diagn., Lech., 2018, vol. 18, pp. 106–113.

    Google Scholar 

  11. de la Cruz, K., Alvarez-Gonzalez, C.A., Pena, E., Morales-Contreras, J.A., and Avila-Fernandez, A., J. Biotechnol., 2018, vol. 8, p. 186. https://doi.org/10.1007/s13205-018-1208-0

    Article  Google Scholar 

  12. Egorova, T.A., Klunova, S.M., and Zhivukhina, E.A., Osnovy biotekhnologii (Principles of Biotechnology), Moscow: Akademiya, 2003.

  13. Popov, S.S., Pashkov, A.N., Popova, T.N., Zoloedov, V.I., Semenikhina, A.V., and Rakhmanova, T.I., Biomed. Khim., 2008, vol. 54, pp. 114–121.

    CAS  PubMed  Google Scholar 

  14. Lysogorskaya, E.N., Roslyakova, T.V., Belyaeva, A.V., Bacheva, A.V., Lozinskij, V.I., and Filippova, I.Yu., Appl. Biochem. Microbiol., 2008, vol. 44, pp. 241–246. https://doi.org/10.1134/S0003683808030022

    Article  CAS  Google Scholar 

  15. Iskusnykh, I.Y., Popova, T.N., Agarkov, A.A., Rjevskiy, S.G., and Pinheiro De Carvalho, M.A.A., J. Toxicol., 2013, Article ID 870628. https://doi.org/10.1155/2013/870628

  16. Mateo, C., Fernandez-Lorente, G., and Guisan, J.M., J. Enzyme Microb. Technol., 2007, vol. 40, pp. 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  17. Valuev, I.L., Vanchugova, L.V., and Valuev, L.I., Appl. Biochem. Microbiol., 2020, vol. 56, pp. 35–38. https://doi.org/10.31857/S0555109920010158

    Article  Google Scholar 

  18. Makar’in, V.E. and Tursunov, B.S., Sovremennye podkhody k razrabotke effektivnykh perevyazochnykh sredstv i polimernykh implantatov (Modern Approaches to the Development of Effective Dressings and Polymer Implants), Moscow, 1992, pp. 115–116.

    Google Scholar 

  19. Blednov, A.V., Nov. Khir., 2006, vol. 14, no. 1, pp. 9–19.

    Google Scholar 

  20. Vernikovskii, V.V. and Stepanova, E.F., Vestn. Nov. Med. Tekhnol., 2006, vol. XIII, no. 4, pp. 130–131.

    Google Scholar 

  21. Kovalenko, G.A., Pharm. Chem. J., 1998, vol. 32, no. 4, pp. 213–216. https://doi.org/10.1007/BF02465836

    Article  Google Scholar 

  22. Kholyavka, M.G., Artyukhov, V.G., and Sazykina, S.M., Radiats. Biol. Radioekol., 2017, vol. 57, pp. 66–70. https://doi.org/10.7868/S0869803117010064

    Article  Google Scholar 

  23. Goradia, D., J. Mol. Catal. B: Enzym., 2005, vol. 32, pp. 231–239. https://doi.org/10.1016/j.molcatb.2004.12.007

    Article  CAS  Google Scholar 

  24. Díaz, J.F. and Balkus, K.J., J. Mol. Catal. B: Enzym., 1996, vol. 2, nos. 2–3, pp. 115–126. https://doi.org/10.1016/S1381-1177(96)00017-3

    Article  Google Scholar 

  25. Kulik, E.A., Kato, K., Ivanchenko, M.I., and Ikada, Y., Biomaterials, 1993, vol. 14, pp. 76–769. https://doi.org/10.1016/0142-9612(93)90041-Y

    Article  Google Scholar 

  26. Xu, F., Wang, W.H., Tan, Y.J., and Bruening, M.L., Anal. Chem., 2010, vol. 82, pp. 10045–10051. https://doi.org/10.1021/ac101857j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borodina, T.N., Rumsh, L.D., Kunizhev, S.M., Sukhorukov, G.B., Vorozhtsov, G.N., Fel’dman, B.M., and Markvicheva, E.A., Biomed. Khim., 2007, vol. 53, pp. 557–565.

    CAS  PubMed  Google Scholar 

  28. Tapdygov, Sh.Z., in II Mezhdunarodnaya konferentsiya Rossiiskogo khimicheskogo obshchestva im. D.I. Mendeleeva “Innovatsionnye khimicheskie tekhnologii i biotekhnologii materialov i produktov,” Tezisy dokladov (II International Conference of Mendeleev Russian Chemical Society “Innovative Chemical Technologies and Biotechnology of Materials and Products,” Abstracts of Papers), 2010, pp. 348–349.

  29. Loginova, O.O., Kholyavka, M.G., and Artyukhov, V.G., Biofarm. Zh., 2015, no. 2, pp. 13–16.

  30. Slivkin, A.I., Belenova, A.S., Kholyavka, M.G., Bogachev, M.I., and Logvinova, E.E., Sorbts. Khromatogr. Protsessy, 2013, vol. 13, no. 1, pp. 53–59.

    CAS  Google Scholar 

  31. Heltier, H.-D., Zippl, V., Ronyan, D., and Volkers, G., Molekulyarnoe modelirovanie: teoriya i praktika (Molecular Modeling: Theory and Practice), Moscow: BINOM, Lab. Znanii, 2013, 2nd ed.

  32. Holyavka, M.G., Koroleva, V.A., Makin, S.M., Olshannikova, S.S., Kondratyev, M.S., Samchenko, A.A., and Artyukhov, V.G., Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farmats., 2017, vol. 3, pp. 86–90.

    Google Scholar 

  33. Holyavka, M.G., Kondratyev, M.S., Terentyev, V.V., Samchenko, A.A., Kabanov, A.V., Komarov, V.M., and Artyukhov, V.G., Biophysics, 2017, vol. 62, pp. 5–11. https://doi.org/10.1134/S0006350917010109

    Article  CAS  Google Scholar 

  34. Arrondo, J.L.R., Muga, A., Castresana, J., and Goni, F.M., Prog. Biophys. Mol. Biol., 1993, vol. 59, pp. 23–56. https://doi.org/10.1016/0079-6107(93)90006-6

    Article  CAS  PubMed  Google Scholar 

  35. Siebert, F., Methods Enzymol., 1995, vol. 246, pp. 501–526.

    Article  CAS  Google Scholar 

  36. Jackson, M. and Mantsch, H.H., Crit. Rev. Biochem. Mol. Biol., 1995, vol. 30, pp. 95–120. https://doi.org/10.3109/10409239509085140

    Article  CAS  PubMed  Google Scholar 

  37. Goormaghtigh, E., Cabiaux, V., and Ruysschaert, J.-M., Subcell Biochem., 1994, vol. 23, pp. 329–362.

    Article  CAS  Google Scholar 

  38. Fabian, H. and Mäntele, W., Infrared spectroscopy of proteins, in Handbook of Vibrational Spectroscopy, Chalmers, J.M. and Griffiths, P.R., Eds., Chichester: Wiley, 2002, pp. 3399–3426.

    Google Scholar 

  39. Barth, A., IR spectroscopy, in Protein Structures: Methods in Protein Structure and Stability Analysis, Uversky, V.N. and Permyakov, E.A., Eds., Nova Sci. Publ., 2006, pp. 69–152.

    Google Scholar 

  40. Arrondo, J.L.R. and Goni, F.M., Prog. Biophys. Mol. Biol, 1999, vol. 72, pp. 367–405. https://doi.org/10.1016/s0079-6107(99)00007-3

    Article  CAS  PubMed  Google Scholar 

  41. Kauffmann, E., Darnton, N.C., Austin, R.H., Batt, C., and Gerwert, K., Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 6646–6649. https://doi.org/10.1073/pnas.101122898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ten, G.N., Gerasimenko, A.Yu., Shcherbakova, N.E., and Baranov, V.I., Izv. Sarat. Univ., Nov. Ser., Ser.: Fiz., 2019, vol. 19, no. 1, pp. 43–57.

    Google Scholar 

  43. Faizullin, D.A., Konnova, T.A., Zuev, Y.F., and Haertle, T., Russ. J. Bioorg. Chem., 2013, vol. 39, pp. 366–372. https://doi.org/10.7868/S0132342313040076

    Article  CAS  Google Scholar 

  44. Valiullina, Y.A., Ermakova, E.A., Faizullin, D.A., Zuev, Y.F., and Mirgorodskaya, A.B., J. Struct. Chem., 2014, vol. 55, pp. 1556–1564. https://doi.org/10.1134/S0022476614080253

    Article  CAS  Google Scholar 

  45. Serdyuk, I., Zakkai, N., and Zakkai, Dzh., Metody v molekulyarnoi biofizike: struktura, funktsiya, dinamika, v 2 t. (Methods in Molecular Biophysics: Structure, Function, and Dynamics, in 2 vols.), Moscow: KDU, 2009, vol. 1.

  46. Gorbunov, N.V., Zh. Fiz. Khim., 1978, vol. 52, pp. 1259–1262.

    CAS  Google Scholar 

  47. Polyanskii, N.G., Metody issledovaniya ionitov (Methods for the Study of Ion Exchangers), Moscow: Khimiya, 1976, p. 208.

  48. Kholyavka, M.G. and Artyukhov, V.G., Immobilizovannye biologicheskie sistemy: biofizicheskie aspekty i prakticheskoe primenenie (uchebnoe posobie). Voronezhskii gosudarstvennyi universitet (Immobilized Biological Systems: Biophysical Aspects and Practical Application (Tutorial). Voronezh State University), Voronezh: Voronezh. Gos. Univ., 2017.

  49. Trevan, M.D., Immobilized Enzymes, Chichester: Wiley, 1980.

    Google Scholar 

  50. Holyavka, M.G., Artyuhov, V.G., Sazykina, S.M., and Nakvasina, M.A., Pharm. Chem. J., 2017, vol. 51, pp. 702–706. https://doi.org/10.1007/s11094-017-1678-0

    Article  CAS  Google Scholar 

  51. Uglyanskaya V.A., Infrakrasnaya spektroskopiya ionoobmennykh materialov (Infrared Spectroscopy of Ion Exchange Materials), Voronezh: Voronezh. Gos. Univ., 1989, p. 208.

  52. Smith, A., Applied Infrared Spectroscopy: Fundamentals Techniques and Analytical Problem-Solving, Wiley, 1979.

    Google Scholar 

  53. Kholyavka, M.G., Kayumov, A.R., Loginova, O.O., Baidamshina, D.R., Trizna, E.Yu., Sazykina, S.M., Belenova, A.S., Artyukhov, V.G., and Slivkin, A.I., Biofarm. Zh., 2017, vol. 9, pp. 31–37.

    Google Scholar 

  54. Loginova, O.O., Kholyavka, M.G., Artyukhov, V.G., and Belenova, A.S., Fundam. Issled., 2013, no. 11-3, pp. 484–487.

  55. Artyukhov, V.G., Kovaleva, T.A., Kholyavka, M.G., Bityutskaya, L.A., and Grechkina, M.V., Appl. Biochem. Microbiol., 2010, vol. 46, pp. 422–427.

    Article  Google Scholar 

  56. Folin, O. and Ciocalteau, V., J. Biol. Chem., 1929, vol. 73, pp. 627–650.

    Article  Google Scholar 

  57. Loginova, O.O., Kholyavka, M.G., Artyukhov, V.G., and Belenova, A.S., Vestn. VGU, Ser. Khim., Biol., Farmats., 2013, no. 2, pp. 116–119.

  58. Can, T., Chen, C.I., and Wang, Y.F., J. Mol. Graphics Modell., 2006, vol. 25, pp. 442–454. https://doi.org/10.1016/j.jmgm.2006.02.012

    Article  CAS  Google Scholar 

  59. Richards, F.M., Annu. Rev. Biophys. Bioeng., 1977, vol. 6, pp. 151–176. https://doi.org/10.1146/annurev.bb.06.060177.001055

    Article  CAS  PubMed  Google Scholar 

  60. Guex, N. and Peitsch, M.C., Electrophoresis, 1997, vol. 18, pp. 2714–2723.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experiments were performed using the scientific and technical base of the Center of the Collective Use of the scientific equipment of the Voronezh State University.

Funding

This study was supported by the Grant of the President of the Russian Federation for the state support of the young Russian DPhil scientists MD-1982.2020.4, project 075-15-2020-325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Holyavka.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants and animals performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Onoprienko

Abbreviations: BSA, bovine serum albumin.

Corresponding author: phone: +7 (473) 220-85-86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankova, S.M., Sakibaev, F.A., Holyavka, M.G. et al. Studies of the Processes of the Trypsin Interactions with Ion Exchange Fibers and Chitosan. Russ J Bioorg Chem 47, 765–776 (2021). https://doi.org/10.1134/S1068162021030146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021030146

Keywords:

Navigation