Skip to main content
Log in

Evaluation of Antimicrobial Activity of the C3f Peptide, a Derivative of Human C3 Protein

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The complement system plays an important role in the protection of the organism from infection. A key step in complement activation is the proteolytic cleavage of C3 protein resulting in a soluble anaphylatoxin C3a peptide and C3b protein that is able to form a covalent bond with surface molecules of microbial cells. The activity of C3b is regulated by its subsequent limited proteolysis with the release of the C3f peptide, which is believed to have no functional activity itself. Based on the physicochemical properties of C3f, we hypothesized that this peptide may exhibit antimicrobial activity. Complement activation usually takes place on the surface of pathogens, in particular, bacterial cells, and local generation of antimicrobial peptides can contribute significantly to their neutralization. The antimicrobial activity of complement derivatives, C3a and C4a peptides, is already known from the literature. To study the antimicrobial properties of C3f, we obtained this peptide by the method of solid-phase synthesis. It has been shown that human C3f exhibits moderate antimicrobial activity in vitro against certain gram-positive bacteria (Listeria monocytogenes, Micrococcus luteus, Enterococcus faecium) with minimal inhibitory concentrations of 70 μM (for L. monocytogenes) or higher. The revealed antimicrobial activity of C3f is much lower than the activity of C3a described in the literature. Several microorganisms (Bacillus cereus, Escherichia coli, Candida albicans) were resistant to C3f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ricklin, D., Hajishengallis, G., Yang, K., and Lambris, J.D., Nat. Immunol., 2010, vol. 11, pp. 785–797. https://doi.org/10.1038/ni.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merle, N.S., Church, S.E., Fremeaux-Bacchi, V., and Roumenina, L.T., Front. Immunol., 2015, vol. 6. Article 262. https://doi.org/10.3389/fimmu.2015.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barnum, S.R., Pharmacol. Ther., 2017, vol. 172, pp. 63–72. https://doi.org/10.1016/j.pharmthera.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  4. Umnyakova, E.S., Pashinskaya, L.D., Krenev, I.A., Legkovoy, S.V., Kokryakov, V.N., and Berlov, M.N., Med. Akad. Zh., 2018, vol. 18, pp. 7–16. https://doi.org/10.17816/MAJ1837-16

    Article  Google Scholar 

  5. Nordahl, E.A., Rydengard, V., Nyberg, P., Nitsche, D.P., Mörgelin, M., Malmsten, M., Björck, L., and Schmidtchen, A., Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 48, pp. 16879–16884. https://doi.org/10.1073/pnas.040667810

    Article  Google Scholar 

  6. Sonesson, A., Ringstad, L., Nordahl, E.A., Malmsten, M., Morgelin, M., and Schmidtchen, A., Biochim. Biophys. Acta, 2007, vol. 1768, pp. 346–353. https://doi.org/10.1016/j.bbamem.2006.10.017

    Article  CAS  PubMed  Google Scholar 

  7. Pasupuleti, M., Walse, B., Nordahl, E., Mörgelin, M., Malmsten, M., and Schmidtchen, A., J. Biol. Chem., 2007, vol. 282, pp. 2520–2528. https://doi.org/10.1074/jbc.M607848200

    Article  CAS  PubMed  Google Scholar 

  8. Ricklin, D., Reis, E.S., Mastellos, D.C., Gros, P., and Lambris, J.D., Immunol. Rev., 2016, vol. 274, pp. 33–58. https://doi.org/10.1111/imr.12500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barnum, S.R., in The Complement FactsBook, 2nd ed., Barnum, S. and Schein, T., Eds., Acad. Press, 2018, pp. 157–170. https://doi.org/10.1016/B978-0-12-810420-0.00016-X

  10. Ganu, V.S., Müller-Eberhard, H.J., and Hugli, T.E., Mol. Immunol., 1989, vol. 10, pp. 939–948. https://doi.org/10.1016/0161-5890(89)90112-0

    Article  Google Scholar 

  11. Dousset, B., Straczek, J., Maachi, F., Nguyen, D.L., Jacob, C., Capiaumont, J., Nabet, P., and Belleville, F., Biochem. Biophys. Res. Commun., 1998, vol. 247, pp. 587–591. https://doi.org/10.1006/bbrc.1998.8834

    Article  CAS  PubMed  Google Scholar 

  12. Xiang, Y., Matsui, T., Matsuo, K., Shimada, K., Tohma, S., Nakamura, H., Masuko, K., Yudoh, K., Nishioka, K., and Kato, T., Arthritis Rheum., 2007, vol. 56, pp. 2018–2030. https://doi.org/10.1002/art.22645

    Article  CAS  PubMed  Google Scholar 

  13. Teixeira, V., Feio, M.J., and Bastos, M., Prog. Lipid Res., 2012, vol. 51, pp. 149–177. https://doi.org/10.1016/j.plipres.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Kokryakov, V.N., Aleshina, G.M., Berlov, M.N., Yankelevich, I.A., Umnyakova, E.S., Leonova, L.E., Tsvetkova, E.V., Kolobov, A.A., Jr., Men’shenin, A.V., and Kurdyumova, I.V., Ross. Immunol. Zh., 2014, vol. 8, pp. 325–328.

    Google Scholar 

  15. Kumar, P., Kizhakkedathu, J.N., and Straus, S.K., Biomolecules, 2018, vol. 8. Article 4. https://doi.org/10.3390/biom8010004

    Article  CAS  PubMed Central  Google Scholar 

  16. Rončević, T., Puizina, J., and Tossi, A., Int. J. Mol. Sci., 2019, vol. 20, Article 5713. https://doi.org/10.3390/ijms20225713

    Article  CAS  PubMed Central  Google Scholar 

  17. Ajingi, Y.S. and Jongruja, N., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 463–479. https://doi.org/10.1134/S1068162020040044

    Article  Google Scholar 

  18. Schiffer, M. and Edmundson, A.B., Biophys. J., 1967, vol. 7, pp. 121–135. https://doi.org/10.1016/S0006-3495(67)86579-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Selsted, M.E., Novotny, M.J., Morris, W.L., Tang, Y.Q., Smith, W., and Cullor, J.S., J. Biol. Chem., 1992, vol. 267, pp. 4292–4295.

    Article  CAS  Google Scholar 

  20. Lawyer, C., Pai, S., Watabe, M., Borgia, P., Mashimo, T., Eagleton, L., and Watabe, K., FEBS Lett., 1996, vol. 390, pp. 95–98. https://doi.org/10.1016/0014-5793(96)00637-0

    Article  CAS  PubMed  Google Scholar 

  21. Simmaco, M., Mignogna, G., Canofeni, S., Miele, R., Mangoni, M.L., and Barra, D., Eur. J. Biochem., 1996, vol. 242, pp. 788–792. https://doi.org/10.1111/j.1432-1033.1996.0788r.x

    Article  CAS  PubMed  Google Scholar 

  22. Rozek, T., Wegener, K.L., Bowie, J.H., Olver, I.N., Carver, J.A., Wallace, J.C., and Tyler, M.J., Eur. J. Biochem., 2000, vol. 267, pp. 5330–5341. https://doi.org/10.1046/j.1432-1327.2000.01536.x

    Article  CAS  PubMed  Google Scholar 

  23. Manzo, G., Ferguson, P.M., Gustilo, V.B., Hind, C.K., Clifford, M., Bui, T.T., Drake, A.F., Atkinson, R.A., Sutton, J.M., Batoni, G., Lorenz, C.D., Phoenix, D.A., and Mason, A.J., Sci. Rep., 2019, vol. 9, Article 1385. https://doi.org/10.1038/s41598-018-37630-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schägger, H. and von Jagow, G., Anal. Biochem., 1987, vol. 166, pp. 368–379. https://doi.org/10.1016/0003-2697(87)90587-2

    Article  PubMed  Google Scholar 

  25. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A., in Proteomics Protocols Handbook, Walker, J.M., Ed., Totowa, NJ: Humana Press, 2005, pp. 571–607. https://doi.org/10.1385/1-59259-890-0:571

  26. Pace, C.N., Vajdos, F., Fee, L., Gimsley, G., and Gray, T., Protein Sci., 1995, vol. 4, pp. 2411–2423. https://doi.org/10.1002/pro.5560041120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gautier, R., Douguet, D., Antonny, B., and Drin, G., Bioinformatics, 2008, vol. 24, pp. 2101–2102. https://doi.org/10.1093/bioinformatics/btn392

    Article  CAS  PubMed  Google Scholar 

  28. Lamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., and Tufféry, P., Nucleic Acids Res., 2016, vol. 44, pp. W449–W454. https://doi.org/10.1093/nar/gkw329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Comput. Chem., 2004, vol. 25, pp. 1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  30. Sievers, F., Wilm, A., Dineen, D.G., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J.D., and Higgins, D.G., Mol. Syst. Biol., 2011, vol. 7. Article 539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lehrer, R.I., Rosenman, M., Harwig, S.S., Jackson, R., and Eisenhauer, P., J. Immunol. Methods, 1991, vol. 137, pp. 167–173. https://doi.org/10.1016/0022-1759(91)90021-7

    Article  CAS  PubMed  Google Scholar 

  32. Qu, X.-D., Harwig, S.S.L., Oren, A., Shafer, W.M., and Lehrer, R.I., Infect. Immun., 1996, vol. 64, pp. 1240–1245.

    Article  CAS  Google Scholar 

  33. Berlov, M.N., Lodygin, P.A., Andreeva, Yu.V., and Kokryakov, V.N., Biochemistry (Moscow), 2001, vol. 66, pp. 1008–1013. https://doi.org/10.1023/a:1012325810788

    Article  CAS  PubMed  Google Scholar 

  34. Berlov, M.N., Korableva, E.S., Andreeva, Yu.V., Ovchinnikova, T.V., and Kokryakov, V.N., Biochemistry (Mosc.), 2007, vol. 72, pp. 445–451. https://doi.org/10.1134/S0006297907040128

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Mass spectrometry analysis was performed using the equipment of the Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical Biological Agency of the Russian Federation.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0557-2019-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Berlov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The article contains no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interest.

Additional information

The authors dedicate the article to their teacher, Professor Vladimir Nikolaevich Kokryakov (1944–2020), a remarkable man and an outstanding scientist, founder of the Russian school for the study of antimicrobial peptides of animal origin.

Translated by N. Onishchenko

Abbreviations: MAC, membrane attack complex; MIC, minimal inhibitory concentration; Fmoc, fluorescein methyloxycarbonyl protective group; MALDI, matrix-assisted laser desorption/ionization.

Corresponding author: phone: +7 (812) 234-07-64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozolotin, V.A., Umnyakova, E.S., Kopeykin, P.M. et al. Evaluation of Antimicrobial Activity of the C3f Peptide, a Derivative of Human C3 Protein. Russ J Bioorg Chem 47, 741–748 (2021). https://doi.org/10.1134/S1068162021030158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021030158

Keywords:

Navigation