Skip to main content
Log in

Going Beyond Traditional Roughness Metrics for Floor Tiles: Measuring Topography Down to the Nanoscale

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Slipping is a major cause of injury and hospitalization in the USA and globally. Slipping occurs when the instantaneous friction between the shoe and floor is less than the required friction. While floor roughness is a key factor contributing to friction, prior investigations have primarily used stylus profilometry, which is incapable of measuring roughness at small scales, below approximately 1 micron in lateral size. In the present research, the small-scale roughness was quantified using cross-section scanning electron microscopy (SEM). Three different flooring materials were investigated, including tiles of ceramic and two different types of quarry stones, whose friction coefficients had been previously characterized. The surfaces were cross-sectioned, imaged at magnifications from 250 to 100,000 times, and then the surface profiles were extracted using image analysis. The SEM topography was combined with stylus profilometry measurements, using the power spectral density (PSD), to achieve multi-scale characterization of features ranging from a scan size of 4 mm down to a resolution of 10 nm. The results demonstrate meaningful differences in topography at different length scales, where surfaces with widely varying roughness at one scale were indistinguishable at another. The measurements further showed that floor-tile roughness has self-affine fractal-like character, with hierarchical roughness extending from the micron-scale down to the nanoscale, much of which is undetectable using conventional techniques. Overall, this research supports the investigation of small-scale roughness as a potential missing factor in the understanding of floor topography and its causal effect on slip-and-fall accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All materials are stored in the lab of Tevis D. B. Jacobs. The topography data that support the findings of this study are openly available at the following URLs: Ceramic: https://contact.engineering/go/6xqx7/. Quarry 1: https://contact.engineering/go/p3zuu/. Quarry 2: https://contact.engineering/go/rptba/.

Code Availability

The custom codes used in the topography analysis are available upon request.

References

  1. U.S. department of labor-Bureau of Labor Statistics (BLS).: Employer-Reported Workplace Injuries and Illnesses-2018. (2019). https://www.bls.gov/news.release/archives/osh_11072019.pdf

  2. Leclercq, S., Thouy, S., Rossignol, E.: Progress in understanding processes underlying occupational accidents on the level based on case studies. Ergonomics 50, 59–79 (2007). https://doi.org/10.1080/00140130600980862

    Article  CAS  Google Scholar 

  3. Courtney, T.K., Sorock, G.S., Manning, D.P., Collins, J.W., Holbein-jenny, M.A.: Occupational slip, trip, and fall related injuries: can the contribution of slipperiness be isolated? Ergonomics 44, 1118–1137 (2001). https://doi.org/10.1080/0014013011008553

    Article  CAS  Google Scholar 

  4. Verma, S.K., Chang, W.R., Courtney, T.K., Lombardi, D.A., Huang, Y., Brennan, M.J., Mittleman, M.A., Ware, J.H., Perry, M.J.: A prospective study of floor surface, shoes, floor cleaning and slipping in US limited-service restaurant workers. Occup. Environ. Med. 68, 279–285 (2011). https://doi.org/10.1136/oem.2010.056218

    Article  Google Scholar 

  5. Liberty Mutual Research Institute for Safety.: The Most Disabling Workplace Injuries Cost Industry an Estimated $52 Billion (2009). https://www.libertymutualgroup.com/about-lm/corporate-information/overview Accessed 2020

  6. Liberty Mutual Insurance.: 2019 Workplace Safety Index: The top 10 causes of disabling injuries at work. https://viewpoint.libertymutualgroup.com/article/top-10-causes-disabling-injuries-at-work-2019/ (2019). Accessed 2020

  7. Verma, S.K., Lombardi, D.A., Chang, W., Theodore, K., Brennan, M.J.: A matched case–control study of circumstances of occupational same-level falls and risk of wrist, ankle and hip fracture in women over 45 years of age. Ergonomics 51, 19060–21972 (2008). https://doi.org/10.1080/00140130802558987

    Article  Google Scholar 

  8. Hanson, J.P., Redfern, M.S., Mazumdar, M.: Predicting slips and falls considering required and available friction. Ergonomics 42, 1619–1633 (1999). https://doi.org/10.1080/001401399184712

    Article  CAS  Google Scholar 

  9. Redfern, M.S., Cham, R., Gielo-perczak, K., Grönqvist, R., Hirvonen, M., Lanshammar, H., Marpet, M., Pai, C.Y.-C.I., Powers, C.: Biomechanics of slips. Ergonomics 44, 1138–1166 (2001). https://doi.org/10.1080/0014013011008554

    Article  CAS  Google Scholar 

  10. Strobel, C.M., Menezes, P.L., Lovell, M.R., Beschorner, K.E.: Analysis of the contribution of adhesion and hysteresis to shoe-floor lubricated friction in the boundary lubrication regime. Tribol. Lett. 47, 341–347 (2012). https://doi.org/10.1007/s11249-012-9989-5

    Article  CAS  Google Scholar 

  11. Iraqi, A., Cham, R., Redfern, M.S., Beschorner, K.E.: Coefficient of friction testing parameters influence the prediction of human slips. Appl. Ergon. 70, 118–126 (2018). https://doi.org/10.1016/j.apergo.2018.02.017

    Article  Google Scholar 

  12. Moghaddam, S.R.M., Redfern, M.S., Beschorner, K.E.: A microscopic finite element model of shoe-floor hysteresis and adhesion friction. Tribol. Lett. 59, 1–10 (2015). https://doi.org/10.1007/s11249-015-0570-x

    Article  Google Scholar 

  13. Jones, T., Iraqi, A., Beschorner, K.: Performance testing of work shoes labeled as slip resistant. Appl. Ergon. 68, 304–312 (2018). https://doi.org/10.1016/j.apergo.2017.12.008

    Article  Google Scholar 

  14. Beschorner, K., Lovell, M., Higgs, C.F., III., Redfern, M.S.: Modeling mixed-lubrication of a shoe-floor interface applied to a pin-on-disk apparatus. Tribol. Trans. 52, 560–568 (2009). https://doi.org/10.1080/10402000902825705

    Article  CAS  Google Scholar 

  15. Cowap, M.J.H., Moghaddam, S.R.M., Menezes, P.L., Beschorner, K.E.: Contributions of adhesion and hysteresis to coefficient of friction between shoe and floor surfaces: effects of floor roughness and sliding speed. Tribol. Mater. Surfaces Interfaces 9, 77–84 (2015). https://doi.org/10.1179/1751584X15Y.0000000005

    Article  Google Scholar 

  16. Iraqi, A., Vidic, N.S., Redfern, M.S., Beschorner, K.E.: Prediction of coefficient of friction based on footwear outsole features. Appl. Ergon. 82, 102963 (2020). https://doi.org/10.1016/j.apergo.2019.102963

    Article  Google Scholar 

  17. Beschorner, K.E., Redfern, M.S., Porter, W.L., Debski, R.E.: Effects of slip testing parameters on measured coefficient of friction. Appl. Ergon. 38, 773–780 (2007). https://doi.org/10.1016/j.apergo.2006.10.005

    Article  Google Scholar 

  18. Beschorner, K.E., Hemler, S.L., Moghaddam, S.R.M., Iraqi, A., Redfern, M.S.: Footwear for the prevention of human slips: from friction mechanics to ergonomic solutions. In: “Slips, Trips & Falls” Conference Madrid 2020 (2020)

  19. Singh, G., Beschorner, K.E.: A method for measuring fluid pressures in the shoe–floor– fluid interface: application to shoe tread evaluation. IIE Trans Occup. 2, 53–59 (2014). https://doi.org/10.1080/21577323.2014.919367

    Article  Google Scholar 

  20. Hemler, S.L., Charbonneau, D.N., Iraqi, A., Redfern, M.S., Haight, J.M., Moyer, B.E., Beschorner, K.E.: Changes in under-shoe traction and fluid drainage for progressively worn shoe tread. Appl. Ergon. 80, 35–42 (2019). https://doi.org/10.1016/j.apergo.2019.04.014

    Article  Google Scholar 

  21. Beschorner, K.E., Albert, D.L., Chambers, A.J., Redfern, M.S.: Fluid pressures at the shoe-floor-contaminant interface during slips: Effects of tread & implications on slip severity. J. Biomech. 47, 458–463 (2014). https://doi.org/10.1016/j.jbiomech.2013.10.046

    Article  Google Scholar 

  22. ISO 4287: Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters. (1997)

  23. ASME B46: Committee on Classification and Designation of Surface Qualities. (2005)

  24. ISO 16610: Geometrical product specifications (GPS) - Filtration. (2011)

  25. ISO 3274: Geometrical Product Specifications (GPS) - Surface texture: Profile method - Nominal characteristics of contact (stylus) instruments. (1996)

  26. Derler, S., Huber, R., Feuz, H.P., Hadad, M.: Influence of surface microstructure on the sliding friction of plantar skin against hard substrates. Wear 267, 1281–1288 (2009). https://doi.org/10.1016/j.wear.2008.12.053

    Article  CAS  Google Scholar 

  27. Chang, W., Matz, S., Grönqvist, R.: Linear regression models of floor surface parameters on friction between Neolite and quarry tiles. Appl. Ergon. 41, 27–33 (2010). https://doi.org/10.1016/j.apergo.2009.03.006

    Article  Google Scholar 

  28. Chang, W., Grönqvist, R., Hirvonen, M.: The effect of surface waviness on friction between Neolite and quarry tiles. Ergonomics. 47, 890–906 (2004). https://doi.org/10.1080/00140130410001670390

  29. Chang, W.R.: The effect of surface roughness and contaminant on the dynamic friction of porcelain tile. Appl. Ergon. 32, 173–184 (2001). https://doi.org/10.1016/S0003-6870(00)00054-5

    Article  CAS  Google Scholar 

  30. Kim, I., Hsiao, H., Simeonov, P.: Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces. Appl. Ergon. 44, 58–64 (2013). https://doi.org/10.1016/j.apergo.2012.04.010

    Article  Google Scholar 

  31. El-Sherbiny, Y.M., Hasouna, A.T., Ali, W.Y.: Friction coefficient of rubber sliding against flooring materials. ARPN J. Eng. Appl. Sci. 7, 121–126 (2012)

    CAS  Google Scholar 

  32. Mandelbrot, B.: How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Sci. 156, 636–638 (1967)

    Article  CAS  Google Scholar 

  33. Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., Brodsky, E.E.: Roughness of fault surfaces over nine decades of length scales. J. Geophys. Res. Solid Earth. 117, 1–30 (2012). https://doi.org/10.1029/2011JB009041

    Article  Google Scholar 

  34. Persson, B.N.J.: On the fractal dimension of rough surfaces. Tribol. Lett. 54, 99–106 (2014). https://doi.org/10.1007/s11249-014-0313-4

    Article  Google Scholar 

  35. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. 17, R1–R62 (2005). https://doi.org/10.1088/0953-8984/17/1/R01

    Article  Google Scholar 

  36. Kotowski, P.: Fractal dimension of metallic fracture surface. Int. J. Fract. 141, 269–286 (2006). https://doi.org/10.1007/s10704-006-8264-x

    Article  CAS  Google Scholar 

  37. Bonamy, D., Ponson, L., Prades, S., Bouchaud, E., Guillot, C.: Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics. Phys. Rev. Lett. 97, 1–4 (2006). https://doi.org/10.1103/PhysRevLett.97.135504

    Article  CAS  Google Scholar 

  38. Jacobs, T.D.B., Junge, T., Pastewka, L.: Quantitative characterization of surface topography using spectral analysis. Surf. Topogr. Metrol. Prop. 5, 013001 (2017). https://doi.org/10.1088/2051-672X/aa51f8

  39. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001). https://doi.org/10.1063/1.1388626

    Article  CAS  Google Scholar 

  40. Lorenz, B., Oh, Y.R., Nam, S.K., Jeon, S.H., Persson, B.N.J.: Rubber friction on road surfaces: Experiment and theory for low sliding speeds. 142, 194701 (2015). https://doi.org/10.1063/1.4919221

    Article  CAS  Google Scholar 

  41. Yang, C., Persson, B.N.J.: Contact mechanics: Contact area and interfacial separation from small contact to full contact. J. Phys. Condens. Matter. 20, 215214 (2008). https://doi.org/10.1088/0953-8984/20/21/215214

  42. Moore, D.F.: The Friction and Lubrication of Elastomers. Pergamon Press, Oxford (1972)

    Google Scholar 

  43. Chang, W.R., Kim, I.J., Manning, D.P., Bunterngchit, Y.: The role of surface roughness in the measurement of slipperiness. Ergonomics 44, 1200–1216 (2001). https://doi.org/10.1080/00140130110085565

    Article  CAS  Google Scholar 

  44. Eaton, P., Paul, W.: Measuring AFM images. In: Atomic Force Microscopy. Oxford University Press, New York (2010)

  45. Kim, I.J.: Investigation and interpretation of flooring wear development for pedestrian slip resistance assessments. Tribol. Trans. 61, 168–177 (2018). https://doi.org/10.1080/10402004.2017.1287318

    Article  CAS  Google Scholar 

  46. ASTM F2508–12a: Standard Practice for Validation, Calibration, and Certification of Walkway Tribometers Using Referencre Surfaces. ASTM Int. (2012)

  47. Aschan, C., Hirvonen, M., Mannelin, T., Rajama, E.: Development and validation of a novel portable slip simulator. Appl. Ergon. 36, 585–593 (2005). https://doi.org/10.1016/j.apergo.2005.01.015

    Article  Google Scholar 

  48. Khanal, S.R., Gujrati, A., Vishnubhotla, S.B., Nowakowski, P., Bonifacio, C.S., Pastewka, L., Jacobs, T.D.B.: Characterization of small-scale surface topography using transmission electron microscopy. Surf. Topogr. Metrol. Prop. 6, 045004 (2018). https://doi.org/10.1088/2051-672X/aae5b3

  49. Gujrati, A., Khanal, S.R., Pastewka, L., Jacobs, T.D.B.: Combining TEM, AFM, and profilometry for quantitative topography characterization across all scales. ACS Appl. Mater. Interfaces. 10, 29169–29178 (2018). https://doi.org/10.1021/acsami.8b09899

    Article  CAS  Google Scholar 

  50. Prabhu, K.M.: Window Functions and Their Applications in Signal Processing. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  51. Villarrubia, J.S.: Morphological estimation of tip geometry for scanned probe microscopy. Surf. Sci. 321, 287–300 (1994). https://doi.org/10.1016/0039-6028(94)90194-5

    Article  CAS  Google Scholar 

  52. Church, E.L., Takacs, P.Z.: Effects of the nonvanishing tip size in mechanical profile measurements. Proc. SPIE 1332, Opt. Test. Metrol. III Recent Adv. Ind. Opt. Insp. 1332, 504–514 (1991)

  53. Schmittbuhl, J., Vilotte, J.P.: Reliability of self-affine measurements. Phys. Rev. 51, 131–147 (1995)

    CAS  Google Scholar 

  54. Mandelbrot, B.B.: Self-affine fractals and fractal dimension. Phys. Scr. 32, 257–260 (1985). https://doi.org/10.1088/0031-8949/32/4/001

    Article  Google Scholar 

  55. Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46, 269–282 (2004). https://doi.org/10.1137/S0036144501394387

    Article  Google Scholar 

  56. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Hoboken (2015)

    Google Scholar 

  57. Brown, S.R., Scholz, C.H.: Broad bandwidth study of the topography of natural rock surfaces. J. Geophys. Res. 90, 12575–12582 (1985). https://doi.org/10.1029/jb090ib14p12575

    Article  Google Scholar 

  58. Moghaddam, S.R.M., Acharya, A., Redfern, M.S., Beschorner, K.E.: Predictive multiscale computational model of shoe-floor coefficient of friction. J. Biomech. 66, 145–152 (2018). https://doi.org/10.1016/j.jbiomech.2017.11.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of the Nanoscale Fabrication and Characterization Facility (NFCF) in the Gertrude E. & John M. Petersen Institute of NanoScience and Engineering and Materials Micro-characterization Lab (MMCL) in Swanson School of Engineering. Funding was provided by the National Science Foundation under Award Number CMMI-1727378.

Funding

Funding was provided by the National Science Foundation under Award Number CMMI-1727378.

Author information

Authors and Affiliations

Authors

Contributions

RD performed sample preparation, characterization, analysis and writing of the manuscript. AG assisted with characterization and analysis. MMP performed sample preparation. KEB and TDBJ guided the research and revised the manuscript.

Corresponding author

Correspondence to Tevis D. B. Jacobs.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Gujrati, A., Pendolino, M.M. et al. Going Beyond Traditional Roughness Metrics for Floor Tiles: Measuring Topography Down to the Nanoscale. Tribol Lett 69, 92 (2021). https://doi.org/10.1007/s11249-021-01460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01460-8

Keywords

Navigation