Skip to main content
Log in

Analysis of expression characteristics of soybean leaf and root tissue-specific promoters in Arabidopsis and soybean

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The characterization of tissue-specific promoters is critical for studying the functions of genes in a given tissue/organ. To study tissue-specific promoters in soybean, we screened tissue-specific expressed genes using published soybean RNA-Seq-based transcriptome data coupled with RT-PCR analysis. We cloned the promoters of three genes, GmADR1, GmBTP1, and GmGER1, and constructed their corresponding β-Glucuronidase (GUS) promoter-GUS reporter vectors. We generated transgenic Arabidopsis plants and examined the expression patterns of these promoters by GUS staining and RT-PCR analysis. We also transformed the promoter-GUS reporter vectors into soybean to obtain hairy roots, and examined promoter expression by GUS staining. We found a root-specific expression pattern of GmADR1 and GmBTP1 in both Arabidopsis and soybean, and the promoter of GmGER1 showed a leaf-specific pattern in transgenic Arabidopsis plants. To test the potential utility of these promoters in soybean improvement by transgenic means, we used the GmADR1 promoter to drive expression of a salt resistance gene in soybean, GmCaM4, by generating transgenic soybean plants. We found that the transgenic plants had significantly enhanced salt tolerance compared to non-transformed wild-type, suggesting that introducing endogenous promoters by transgenic means can drive the expression of functional genes in specific tissues and organs in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All the datasets used and/or analyzed throughout this study can be available from the corresponding authors on reasonable request.

References

  • Aurélie C, Maegele I, Ha N, Nguyen HH, Crespi MD, Maizel A (2013) In silico identification and in vivo validation of a set of evolutionary conserved plant root-specific cis-regulatory elements. Mech Dev 130(1):70–81

    Article  Google Scholar 

  • Alam MF, Data K, Abrigo E, Oliva N, Tu J, Virmani SS (1999) Transgenic insect resistant maintainer line (IR68899B) for improvement of hybrid rice. Plant Cell Rep 18:572–575

    Article  CAS  Google Scholar 

  • Betrán E, Ashburner M (2000) Duplication, dicistronic transcription, and subsequent evolution of the Alcohol dehydrogenase and Alcohol dehydrogenase-related genes in Drosophila. Mol Biol Evol 17(9):1344–1352

    Article  PubMed  Google Scholar 

  • Battraw MJ, Hall TC (1990) Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15:527–538

    Article  CAS  PubMed  Google Scholar 

  • Bakhsh A, Husnain T (2010) Expression of two insecticidal genes in Cotton. PhD dissertation, University of the Punjab, Lahore, Pakistan

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium tumefaciens-transformed rice plants expressing synthetic cryIAb and cryIAc genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Tang W, Xu CG, Li XH, Lin YJ, Zhang QF (2005) Transgenic indica rice plants harboring a synthetic Cry2A gene of Bacillus thuringiensis exhibit enhaced resistance against rice lepidopteran pests. Theor Appl Genet 111:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Dai ZY, Hooker BS, Anderson D (2000) Thomas SR (2000) Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol Breed 6(3):277–285

    Article  CAS  Google Scholar 

  • Ellis RJ (1981) Chloroplast proteins: Synthesis, transport, and assembly. Annu Rev Plant Physiol 32:111–137

    Article  CAS  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Nat Biotechnol 11:1151–1155

    Article  CAS  Google Scholar 

  • Gilmartin PM, Chua NH (1990) Spacing between GT-1 binding sites within a light-responsive element is critical for transcriptional activity. Plant Cell 2:447–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu RB, Fan CM, Li HY, Zhang QZ, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirai T, Kim YW, Kato K, Hiwasa-Tanase K, Ezura H (2011) Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Res 20:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Re 27(1):297–300

    Article  CAS  Google Scholar 

  • Hill JH, Whitham SA (2014) Control of virus diseases in soybeans. Adv Virus Res 90:355–390

    Article  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Khobragade CN, Beedkar SD, Bodade RG, Vinchurkar AS (2011) Comparative structural modeling and docking studies of oxalate oxidase: Possible implication in enzyme supplementation therapy for urolithiasis. Int J Biol Macromol 48(3):466–473

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park YI, Cho H-T (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18(11):2958–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kereszt A, Li DX, Indrasumunar A, Nguyen-Cue DT, Nontachaiyapoom S, Kinkema M, Gresshoff PM (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protoc 2(4):948–952

    Article  CAS  Google Scholar 

  • Li C, Jiang BJ, Wu CX, Sun HWS, Han TF (2014) GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biol 16(14):245

    Google Scholar 

  • Liu S, Liu C, Wang X, Chen HQ (2021) Seed-specific activity of the Arabidopsis β-glucosidase 19 promoter in transgenic Arabidopsis and tobacco[J]. Plant Cell Rep 40(1):213–221

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, De’hais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouz P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JZ, Fang Y, Pang H (2016) The current status of the soybean-soybean mosaic virus (SMV) pathosystem[J]. Front Microbiol 7:e0150582

    Article  Google Scholar 

  • Lee SH, Kim JC, Lee MS, Heo WD, Seo HY, Yoon HW, Hong JC, Lee SY, Bahk JD, Hwang I, Cho MJ (1995) Identifification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem 270:21806–21812

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sun Y, Yang Q, Kang J, Zhang T, Gruber MY, Fang F (2012) Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP. Mol Biol Rep 39:8559–8569

    Article  CAS  PubMed  Google Scholar 

  • Ma SH, Niu HW, Liu CJ et al (2013) Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. PLoS ONE 8(10):e75271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. Vitro Cell Dev Biol Plant 40:1–22

    Article  CAS  Google Scholar 

  • Philip R, Darnowski DW, Maughan PJ, Vodkin LO (2001) Processing and localization of bovine beta-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. Plant Sci 161(2):323–335

    Article  CAS  PubMed  Google Scholar 

  • Paz MM, Shou H, Guo Z et al (2004) Assessment of conditions affecting agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136(2):167–179

    Article  CAS  Google Scholar 

  • Tang W, Chen H, Xu CG et al (2006) Development of insect-resistant transgenic indica rice with a synthetic Cry1C gene. Mol Breed 18:1–10

    Article  CAS  Google Scholar 

  • Suzuki H, Fowler TJ, Tierney ML (1993) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol Biol 21:109–119

    Article  CAS  PubMed  Google Scholar 

  • Shen YT, Zhou ZK, Wang Z et al (2014) Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell 26(3):996–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song ZY, Tian JL, Fu WZ et al (2013) Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. J Zhejiang Univ Sci B 14:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takenchi Y, Akagi H, Kamasawa N et al (2000) Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211(2):265–274

    Article  Google Scholar 

  • Tremousaygue D, Manevski A, Bardet C et al (1999) Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J 20(5):553–561

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-SEq. Bioinform 25:1105–1111

    Article  CAS  Google Scholar 

  • Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SS, El-Habbak MH, Havens WM et al (2014) Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol 15(2):145–160

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I et al (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitham SA, Qi MS, Innes RW et al (2016) Molecular soybean-pathogen interactions. Annu Rev Phytopathol 54(1):443

    Article  CAS  PubMed  Google Scholar 

  • Winicov I, Valliyodan B, Xue LR et al (2004) The MsPRP2 promoter enables strong heterologous gene expression in a root-specific manner and is enhanced by overexpression of Alfin 1. Planta 219:925–935

    Article  CAS  PubMed  Google Scholar 

  • Xu WL, Zhang DJ, Wu YF et al (2013) Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. Plant Mol Biol 82:353–365

    Article  CAS  PubMed  Google Scholar 

  • Yoo JH, Park CY, Kim JC et al (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH, Varner JE (1991) Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 3:23–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Li D, Zheng C et al (2020) Targeted transgene expression in rice using a callus strong promoter for selectable marker gene control. Front Plant Sci 11:602680

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by Postdoctoral Funding Project in Jilin Province (C02310501) and Technology Innovation Program of Jilin province-Postdoctoral foundation (c92070520) and the China National Novel Transgenic Organisms Breeding Project (2016ZX08004-004–002). These funds played an important role in experimental reagents, consumables, and also provided strong support for preparing manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SW, BL, YD, LJ, and DG designed the experiments. HX, XZ and JY performed the experiments and HX, SW, BL, YD, LJ, and DG drafted the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lili Jiang or Dongquan Guo.

Ethics declarations

Conflict of interests

The authors claim no conflict of interest regarding publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xun, H., Zhang, X., Yu, J. et al. Analysis of expression characteristics of soybean leaf and root tissue-specific promoters in Arabidopsis and soybean. Transgenic Res 30, 799–810 (2021). https://doi.org/10.1007/s11248-021-00266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-021-00266-7

Keywords

Navigation