Skip to main content
Log in

Investigating the Effect of Stearic Acid on the Mechanical, Rheological, and Microstructural Properties of AISI 4605 Feedstock for Metal Injection Molding Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nowadays, the metal injection molding (MIM) process is a manufacturing method to produce complex shape components. Feedstock preparation in this process is vital because produced feedstock defects can be detrimental in the following processing steps. In this study, effect of the percentage of stearic acid (SA) is investigated on the density, strength, hardness, rheological properties, and microstructure of a part made by 4605 low-alloy steel powder using the MIM process. For this reason, feedstock with different percentages of SA from 1 to 17% has been produced. Mechanical and physical properties show that SA, as a surfactant, has two impacts on the results. SA from 1 to 9% improves the powder particle’s distribution in the binder system and increases the strength and density of the sintered bodies. The results also indicate that with more surfactant growth, the density and strength dramatically decrease due to lower carbon in the sintered parts. The carbon content determines the final sample’s microstructure, which has a substantial influence on the properties. Besides, it can be inferred from the results that the hardness lessens with a gentle slope as the amount of SA in the binder system increases. From the perspective of rheological properties, more SA results in higher sensitivity of feedstocks to the shear rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Reference

  1. Askari A, Alaei M, Nekouee K, Omrani A, and Park S, Mater Res Express (2019). https://doi.org/10.1088/2053-1591/ab4f26.

    Article  Google Scholar 

  2. Momeni V, and Alaei M H, Modares Mech Eng 19 (2019) 1199.

    Google Scholar 

  3. Yang B, and German R M, Tungsten Refract Met 2 (1994) 237.

    Google Scholar 

  4. Yang B, and German R M, Int J Powder Metall 33 (1997) 55.

    CAS  Google Scholar 

  5. Li Y, Qu X, Li Z, and Huang B, Trans Nonferrous Met Soc China 8 (1998) 576.

    CAS  Google Scholar 

  6. Miura H, Morikawa H, Kawakami Y, and Ishibashi A, Development of high performance ferrous sliding abrasive wear resistant materials through power injection molding, in 1998 Int Conf Exhib Powder Metall Part Mater (1999) p 5.

  7. Kim, S-W, Ryu J-S, and Moon I-H, Ball milling effect on the powder characteristics in metal injection molding of W-Cu powder, in PM 2 TEC 2000 2000 Int Conf Powder Metall Part Mater (2000) p 4.

  8. Suri P, Atre S V, German R M, and de Souza J P, Mater Sci Eng A 356 (2003) 337. https://doi.org/10.1016/S0921-5093(03)00146-1.

    Article  CAS  Google Scholar 

  9. Turker M, and Karatas C, Powder Metall 47 (2004) 49.

    Article  CAS  Google Scholar 

  10. Fan J, Huang B, and Qu X, Rare Met Mater Eng 34 (2005) 367.

    CAS  Google Scholar 

  11. Khakbiz M, Simchi A, and Bagheri R, Mater Sci Eng A 407 (2005) 105. https://doi.org/10.1016/j.msea.2005.06.057.

    Article  CAS  Google Scholar 

  12. Kim S-W, Suk M-J, and Kim Y-D, Met Mater Int 12 (2006) 39. https://doi.org/10.1007/BF03027521.

    Article  CAS  Google Scholar 

  13. Li Y M, Liu X Q, Luo F H, and Yue J L, Trans Nonferrous Met Soc China (English Ed.) 17 (2007) 1. https://doi.org/10.1016/S1003-6326(07)60039-9.

    Article  Google Scholar 

  14. Yi-min L, Xiang-quan L, Feng-hu L, and Jian-ling W E, Trans Nonferrous Met Soc China 17 (2007) 1.

    Article  Google Scholar 

  15. Tardos G I, Khan M I, and Mort P R, Powder Technol 94 (1997) 245. https://doi.org/10.1016/S0032-5910(97)03321-4.

    Article  CAS  Google Scholar 

  16. Setasuwon P, Bunchavimonchet A, and Danchaivijit S, J Mater Process Technol 196 (2008) 94. https://doi.org/10.1016/j.jmatprotec.2007.05.009.

    Article  CAS  Google Scholar 

  17. German RM, and Bose A, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation (1997).

  18. Chan T-Y, and Lin S-T, J Am Ceram Soc 78 (1995) 2746. https://doi.org/10.1111/j.1151-2916.1995.tb08050.x.

    Article  CAS  Google Scholar 

  19. Martyn M T, James P J, and Haworth B, Adv Hard Mater Prod 5 (1988) 10.

    Google Scholar 

  20. Yan L, Si W, Xiong T, and Miao H, Rare Met Mater Eng 33 (2004) 534.

    CAS  Google Scholar 

  21. Romdhane M R B, Baklouti S, Bouaziz J, Chartier T, and Baumard J-F, J Eur Ceram Soc 24 (2004) 2723. https://doi.org/10.1016/j.jeurceramsoc.2003.09.014.

    Article  CAS  Google Scholar 

  22. Moballegh L, Morshedian J, and Esfandeh M, Science 59 (2005) 2832. https://doi.org/10.1016/j.matlet.2005.04.027.

    Article  CAS  Google Scholar 

  23. Wright J K, Edirisinghe M J, Zhang J G, and Evans J R G, J Am Ceram Soc 73 (1990) 2653.

    Article  CAS  Google Scholar 

  24. Pugh R J, and Bergstrom L, Surface and Colloid Chemistry in Advanced Ceramics Processing, CRC Press, London (1993). https://doi.org/10.1201/9780203737842.

    Book  Google Scholar 

  25. Momeni V, Hossein Alaei M, Askari A, Hossein Rahimi A, and Nekouee K, Materwiss Werksttech 50 (2019) 432. https://doi.org/10.1002/mawe.201800090.

    Article  CAS  Google Scholar 

  26. Momeni V, Askari A, Alaei M H, Rahimi A H, Nekouee K, and Zangi H, Trans Indian Inst Met 72 (2019) 1245. https://doi.org/10.1007/s12666-019-01615-1.

    Article  CAS  Google Scholar 

  27. Askari A, Allaei M H, Mehdipoor Omrani A, and Nekouee Kh, Modares Mech Eng 19 (2020) 1079.

  28. Lin S T P, and German R M, J Mater Sci 29 (1994) 5367. https://doi.org/10.1007/BF01171549.

    Article  CAS  Google Scholar 

  29. Suetsugu Y, and White J L, J Appl Polym Sci 28 (1983) 1481. https://doi.org/10.1002/app.1983.070280421.

    Article  CAS  Google Scholar 

  30. Subuki I, Ismail M, Amir A, and Omar MA, J Teknol (Sciences Eng) 59 (2012) 173. https://doi.org/10.11113/jt.v59.2587.

    Article  Google Scholar 

  31. Gerling R, Aust E, Limberg W, Pfuff M, and Schimansky F P, Mater Sci Eng A 423 (2006) 262. https://doi.org/10.1016/j.msea.2006.02.002.

    Article  CAS  Google Scholar 

  32. Momeni V, Alaei M H, Askari A, Rahimi A H, and Nekouee K, Met Sci Heat Treat 61 (2020) 777. https://doi.org/10.1007/s11041-020-00499-z.

    Article  CAS  Google Scholar 

  33. Momeni V, Zangi H, and Allaei M H, Powder Metall 63 (2020) 27. https://doi.org/10.1080/00325899.2019.1701812.

    Article  CAS  Google Scholar 

  34. Miura H, and Matsuda M, Process Microstruct Control 43 (2002) 343.

    CAS  Google Scholar 

  35. Hausnerova B, Adv Mater Proc 2 (2017) 761. https://doi.org/10.5185/amp.2017/873.

    Article  Google Scholar 

  36. Pogodina N V, Cerclé, C, Avérous, L, Thomann R, Bouquey M, and Muller R, Processing and characterization of biodegradable polymer nanocomposites: detection of dispersion state, in Annu Eur Rheol Conf (2008) pp 543–553. https://doi.org/10.1007/s00397-007-0243-2.

  37. Huang B, Liang S, and Qu X, J Mater Process Technol 137 (2003) 132.

    Article  CAS  Google Scholar 

  38. Wen J, Xie Z, Cao W, and Yang X, J Adv Ceram 5 (2016) 321. https://doi.org/10.1007/s40145-016-0205-1.

    Article  CAS  Google Scholar 

  39. Lal A, and German R M, Acta Mater 47 (1999) 4615.

    Article  Google Scholar 

  40. Li D, Hou H, Liang L, and Lee K, Int J Adv Manuf Technol 49 (2010) 105. https://doi.org/10.1007/s00170-009-2398-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Askari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, V., Askari, A., Allaei, M.H. et al. Investigating the Effect of Stearic Acid on the Mechanical, Rheological, and Microstructural Properties of AISI 4605 Feedstock for Metal Injection Molding Process. Trans Indian Inst Met 74, 2161–2170 (2021). https://doi.org/10.1007/s12666-021-02282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02282-x

Keywords

Navigation