Skip to main content
Log in

Moving Mechanism of a High-speed Insect-scale Microrobot via Electromagnetically Induced Vibration

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams. The microrobot, which has a body length of 12.3 mm and a total mass of 137 mg, can achieve reciprocating lift motion of forelegs without any intermediate linkage mechanisms due to the design of an obliquely upward body tilt angle. The gait study shows that the body tilt angle prevents the forelegs from swinging backward when the feet contact the ground, which results in a forward friction force applied on the feet. During forward movement, the microrobot utilizes the elastic deformation of the simply supported beams as driving force to slide forward and its forelegs and rear legs work as pivots alternatively in a way similar to the movement of soft worms. The gait analysis also indicates that the moving direction of the microrobot is determined by whether its body tilt angle is obliquely upward or downward, and its moving speed is also related to the body tilt angle and as well as the body height. Under an applied AC voltage of 4 V, the microrobot can achieve a moving speed at 23.2 cm·s−1 (18.9 body lengths per second), which is comparable to the fastest speed (20 cm·s−1 or 20 body lengths per second) among the published insect-scale microrobots. The high-speed locomotion performance of the microrobot validates the feasibility of the presented actuation scheme and moving mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierre R S, Bergbreiter S. Toward autonomy in sub-gram terrestrial robots. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2, 231–252.

    Article  Google Scholar 

  2. Karpelson M, Waters B H, Goldberg B, Mahoney B, Ozcan O, Baisch A, Meyitang P M, Smith J R, Wood R J. A wirelessly powered, biologically inspired ambulatory microrobot. IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014, 2384–2391.

  3. Chen Y F, Doshi N, Goldberg B, Wang H Q, Wood R J. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nature Communications, 2018, 9, 2495.

    Article  Google Scholar 

  4. Amirhosseini H, Najafi F. Design, prototyping and performance evaluation of a bio-inspired walking microrobot. Iranian Journal of Science and Technology: Transactions of Mechanical Engineering, 2019, 1, 1–13.

    Google Scholar 

  5. Lee K M, Kim Y, Paik J K, Shin B. Clawed miniature inchworm robot driven by electromagnetic oscillatory actuator. Journal of Bionic Engineering, 2015, 12, 519–526.

    Article  Google Scholar 

  6. Erdem E Y, Chen Y M, Mohebbi M, Suh J W, Kovacs G T A, Darling R B, Bohringer K F. Thermally actuated omnidirectional walking microrobot. Journal of Microelectromechanical Systems, 2010, 19, 433–442.

    Article  Google Scholar 

  7. Pierre R S, Bergbreiter S. Gait exploration of sub-2 g robots using magnetic actuation. IEEE Robotics & Automation Letters, 2017, 2, 34–40.

    Article  Google Scholar 

  8. Shin B, Kim Y, Paik J, Lee K M. Miniaturized twin-legged robot with an electromagnetic oscillatory actuator. Journal of Bionic Engineering, 2018, 15, 106–113.

    Article  Google Scholar 

  9. Contreras D S, Drew D S, Pister K S J. First steps of a millimeter-scale walking silicon robot. International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kaohsiung, Taiwan, 2017, 910–913.

  10. Vogtmann D, St Pierre R, Bergbreiter S. A 25 Mg magnetically actuated microrobot walking at > 5 body lengths/sec. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 2017, 179–182.

  11. Yang B, Wang G, Calandra R, Contreras D, Levine S, Pister K S J. Learning flexible and reusable locomotion primitives for a microrobot. IEEE Robotics & Automation Letters, 2018, 3, 1904–1911.

    Article  Google Scholar 

  12. Nagpal R. Programmable self-assembly in a thousand-robot swarm. Science, 345, 795–799.

  13. Kim S, Clark J E, Cutkosky M R. iSprawl: Design and tuning for high-speed autonomous open-loop running. International Journal of Robotics Research, 2006, 25, 903–912.

    Article  Google Scholar 

  14. Winkler A W, Bellicoso C D, Hutter M, Buchli J. Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robotics & Automation Letters, 2018, 3, 1560–1567.

    Article  Google Scholar 

  15. Suzumori K, Faudzi A A. Trends in hydraulic actuators and components in legged and tough robots: A review. Advanced Robotics, 2018, 32, 458–476.

    Article  Google Scholar 

  16. Eckert P, Ijspeert A J. Benchmarking agility for multilegged terrestrial robots. IEEE Transactions on Robotics, 2019, 35, 529–535.

    Article  Google Scholar 

  17. Liu X Y, Liu Z W, Qi M J, Zhu Y S, Zhang X Y, Lin L W, Yan X J. A fast-moving micro crawling robot with direct electromagnetic driving mechanism. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 2019, 6–9.

  18. Qi M J, Zhu Y S, Liu Z W, Zhang X Y, Yan X J, Lin L W. A fast-moving electrostatic crawling insect. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, USA, 2017, 761–764.

  19. Goldberg B, Zufferey R, Doshi N, Helbling E F, Wood R J. Power and control autonomy for high speed locomotion with an insect-scale legged robot. IEEE Robotics & Automation Letters, 2018, 3, 987–993.

    Article  Google Scholar 

  20. Wu Y C, Yim J K, Liang J M, Shao Z C, Qi M J, Zhong J W, Luo Z H, Yan X J, Zhang M, Wang X H, Fearing R S, Full R J, Lin L W. Insect-scale fast moving and ultrarobust soft robot. Science Robotics, 2019, 4, eaax1594.

    Article  Google Scholar 

  21. Baisch A T, Wood R J. Pop-up assembly of a quadrupedal ambulatory MicroRobot. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 2013, 1518–1524.

  22. Baisch A T, Ozcan O, Goldberg B, Ithier D, Wood R J. High speed locomotion for a quadrupedal microrobot. International Journal of Robotics Research, 2014, 33, 1063–1082.

    Article  Google Scholar 

  23. Hariri H H, Soh G S, Foong S, Wood K. Locomotion study of a standing wave driven piezoelectric miniature robot for bi-directional motion. IEEE Transactions on Robotics, 2017, 33, 742–747.

    Article  Google Scholar 

  24. Duduta M, Clarke D R, Wood R J. A high speed soft robot based on dielectric elastomer actuators. IEEE International Conference on Robotics & Automation (ICRA), Singapore, 2017, 4346–4351.

  25. Lin H T, Leisk G G, Trimmer B. GoQBot: A caterpillar-inspired soft-bodied rolling robot. Bioinspiration & Biomimetics, 2011, 6, 026007.

    Article  Google Scholar 

  26. Umedachi T, Vikas V, Trimmer B A. Softworms: The design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspiration & Biomimetics, 2016, 11, 025001.

    Article  Google Scholar 

  27. Seok S, Onal C D, Cho K J, Wood R J, Rus D, Kim S. Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE-ASME Transactions on Mechatronics, 2013, 18, 1485–1497.

    Article  Google Scholar 

  28. Fang H B, Wang K W. Piezoelectric vibration-driven locomotion systems — Exploiting resonance and bistable dynamics. Journal of Sound and Vibration, 2017, 391, 153–169.

    Article  Google Scholar 

  29. Kim B, Lee M G, Lee Y P, Kim Y I, Lee G H. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators A: Physical, 2006, 125, 429–437.

    Article  Google Scholar 

  30. Li H Y, Furuta K, Chernousko F L. Motion generation of the capsubot using internal force and static friction. IEEE Conference on Decision and Control, San Diego, CA, USA, 2006, 6575–6580.

  31. Yang Z, Zhu L L, Li B T, Sun S C, Chen Y L, Yan Y, Liu Y L, Chen X. Mechanical design and analysis of a crawling locomotion enabled by a laminated beam. Extreme Mechanics Letters, 2016, 8, 88–95.

    Article  Google Scholar 

  32. Cao J W, Qin L, Liu J, Ren Q Y, Foo C C, Wang H Q, Lee H P, Zhu J. Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mechanics Letters, 2018, 21, 9–16.

    Article  Google Scholar 

  33. Hoover A M, Steltz E, Fearing R S. RoACH: An autonomous 2.4 g crawling hexapod robot. IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), Nice, France, 2008, 26–33.

  34. Hoffman K L Wood R J. Passive undulatory gaits enhance walking in a myriapod millirobot. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 2011, 1479–1486.

  35. Goldberg B, Doshi N, Jayaram K, Wood R J. Gait studies for a quadrupedal microrobot reveal contrasting running templates in two frequency regimes. Bioinspiration & Biomimetics, 2017, 12, 046005.

    Article  Google Scholar 

  36. Doshi N, Jayaram K, Goldberg B, Wood R J. Phase control for a legged microrobot operating at resonance. IEEE International Conference on Robotics & Automation (ICRA), Singapore, 2017, 5969–5975.

  37. Qu J, Teeple C B, Oldham K R. Modeling legged microrobot locomotion based on contact dynamics and vibration in multiple modes and axes. Journal of Vibration and Acoustics, 2017, 139, 031013.

    Article  Google Scholar 

  38. Dharmawan A G, Hariri H H, Foong S, Soh G S, Wood K L. Steerable miniature legged robot driven by a single piezoelectric bending unimorph actuator. IEEE International Conference on Robotics & Automation (ICRA), Singapore, 2017, 6008–6013.

  39. Becker F, Minchenya V, Zeidis I, Zimmermann K. Modeling and dynamical simulation of vibration-driven robots. 56th International Scientific Colloquium, Ilmenau University of Technology, 2011, 1–6.

  40. Donald B R, Levey C G, McGray C D, Paprotny I, Rus D. An untethered, electrostatic, globally controllable MEMS micro-robot. Journal of Microelectromechanical Systems, 2006, 15, 1–15.

    Article  Google Scholar 

  41. Nam J, Jeon S, Kim S, Jang G. Crawling microrobot actuated by a magnetic navigation system in tubular environments. Sensors and Actuators A: Physical, 2014, 209, 100–106.

    Article  Google Scholar 

  42. Sun Y C, Leaker B D, Lee J E, Nam R, Naguib H E. Shape programming of polymeric based electrothermal actuator (ETA) via artificially induced stress relaxation. Scientific Reports, 2019, 9, 11445.

    Article  Google Scholar 

  43. Sahai R, Avadhanula S, Groff R, Steltz E, Wood R, Fearing R S. Towards a 3 g crawling robot through the integration of microrobot technologies. IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, USA, 2006, 296–302.

  44. Yong Y K. Miniature resonant ambulatory robot. IEEE Robotics & Automation Letters, 2016, 2, 337–343.

    Google Scholar 

  45. Zhang T S, Kim A, Ochoa M, Ziaie B. Controllable ‘somersault’ magnetic soft robotics. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 2015, 1044–1047.

  46. Miyashita S, Guitron S, Ludersdorfer M, Sung C R, Rus D. An untethered miniature origami robot that self-folds, walks, swims, and degrades. IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, 1490–1496.

  47. Jing W, Pagano N, Cappelleri D. A novel micro-scale magnetic tumbling microrobot. Journal of Micro-Nano Mechatronics, 2013, 8, 1–12.

    Google Scholar 

  48. Minchenya V T. An amphibious vibration-driven microrobot with a piezoelectric actuator. Regular & Chaotic Dynamics, 2013, 18, 63–74.

    Article  Google Scholar 

  49. Du Z W, Fang H B, Zhan Xu J. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective. Mechanical Systems & Signal Processing, 2018, 105, 261–275.

    Article  Google Scholar 

  50. Fang H B, Xu J. Stick-slip effect in a vibration-driven System with dry friction: Sliding bifurcations and optimization. Journal of Applied Mechanics-Transactions of the Asme, 2014, 81, 061001.

    Article  Google Scholar 

  51. Xu J, Fang H B. Improving performance: Recent progress on vibration-driven locomotion systems. Nonlinear Dynamics, 2019, 98, 2651–2669.

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant No. 12002017), China Postdoctoral Science Foundation (Grant No. 2019M650441), and the 111 Project (Grant No. B08009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwei Liu or Xiaojun Yan.

Electronic supplementary material

Supplementary material, approximately 12.6 MB.

Supplementary material, approximately 524 KB.

Supplementary material, approximately 288 KB.

Supplementary material, approximately 5.18 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Z., Zhu, Y. et al. Moving Mechanism of a High-speed Insect-scale Microrobot via Electromagnetically Induced Vibration. J Bionic Eng 18, 662–673 (2021). https://doi.org/10.1007/s42235-021-0037-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-0037-8

Keywords

Navigation