Skip to main content

Advertisement

Log in

Mesoporous V2O5/g-C3N4 Nanocomposites for Promoted Mercury (II) Ions Reduction Under Visible Light

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present study addresses a successful attempt to promote the photocatalytic reduction of mercury ions (Hg2+) over the synthesized V2O5/g-C3N4 by MCM-41 and F-127 templates under the visible light. V2O5 nanoparticles (NPs) were incorporated to g-C3N4 with the percentages of 0.3, 0.6, 0.9 and 1.2 wt%. The synthesized heterojunctions were verified to have large surface areas of 188–206 m2 g−1. It has been shown by TEM analysis that the constructed nanocomposites consist of uniformly dispersed V2O5 NPs over the g-C3N4 surface. The estimated bandgap energy is reduced from 2.7 eV for the pure g-C3N4 to 2.31 eV for the 1.2% V2O5/g-C3N4. The reduction of Hg2+ ions over the nanocomposite containing 0.9 wt% V2O5 under visible light was accomplished with the greater rate (480.23 µmol g−1 h−1), especially when compared to those over pure V2O5 NPs (110.00 µmol g−1 h−1) or pure g-C3N4 (85.22 µmol g−1 h−1). The optimized heterojunction achieved the entire reduction of Hg2+ after illumination by visible light whereas, only 23 and 16% of Hg2+ were reduced when pure V2O5 NPs and pure g-C3N4, respectively, were applied. The promoted achievement of the progressed heterojunction is ascribed to numerous factors like boosted surface area, confined bandgap, uniform dispersion of V2O5, and photocharge recombination suppression. The outstanding photocatalytic applicability of the V2O5/g-C3N4 heterojunctions was reached after reusing five times to reduce Hg2+ under visible light, implying the appreciable stability. This work highlights the practical use of modified g-C3N4-based photocatalysts for green remediation of water systems.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data for this work is available from the corresponding author upon a reasonable request.

References

  1. M. Yeganeh, M. Afyuni, A.-H. Khoshgoftarmanesh, L. Khodakarami, M. Amini, A.-R. Soffyanian, R. Schulin, Mapping of human health risks arising from soilnickel and mercury contamination. J. Hazard. Mater. 244–245, 225–239 (2013)

    Article  PubMed  CAS  Google Scholar 

  2. Z. Chen, Z. Geng, Z. Zhang, L. Ren, T. Tao, R. Yang, Z. Guo, Synthesis of magnetic Fe3O4@C nanoparticles modified with –SO3H and –COOH groups for fast removal of Pb2+, Hg2+, and Cd2+ ions. Eur. J. Inorg. Chem. 2014(20), 3172–3177 (2014)

    Article  CAS  Google Scholar 

  3. R.M. Mohamed, A.A. Ismail, I.A.G. Kini, I.A. Ibrahim, B. Koopman, Synthesis of highly ordered cubic zeolite A and its ion-exchange behavior. Colloids Surf. A Physicochem. Eng. Asp. 348(1–3), 87–92 (2009)

    Article  CAS  Google Scholar 

  4. M.A. Rashid, R.M. Barakat, I.A. Mohamed, Ibrahim, Enhancement of photocatalytic activity of zinc/cobalt spinel oxides by doping with ZrO2 for visible light photocatalytic degradation of 2-chlorophenol in wastewater. J. Photochem. Photobiol., A 284, 1–7 (2014)

    Article  CAS  Google Scholar 

  5. R.M. Mohamed, Synthesis and characterization of AgCl@graphitic carbon nitride hybrid materials for the photocatalytic degradation of atrazine. Ceram. Int. 41, 1197–1204 (2015)

    Article  CAS  Google Scholar 

  6. S. Chiarle, M. Ratto, M. Rovatti, Mercury removal from water by ion exchange resins adsorption. Water Res. 34(11), 2971–2978 (2000)

    Article  CAS  Google Scholar 

  7. D.S. Han, M. Orillano, A. Khodary, Y. Duan, B. Batchelor, A. Abdel-Wahab, Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Water Res. 53, 310–321 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Li, M. Xia, F. An, N. Ma, X. Jiang, S. Zhu, D. Wang, J. Ma, Superior removal of Hg (II) ions from wastewater using hierarchically porous, functionalized carbon. J. Hazard. Mater. 371, 33–41 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. R.M. Mohamed, M. Abdel Salam, Photocatalytic reduction of aqueous mercury(II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite. Mater. Res. Bull. 50, 85–90 (2014)

    Article  CAS  Google Scholar 

  10. R.M. Mohamed, E.S. Aazam, Characterization and catalytic properties of nano-sized Au metal catalyst on titanium containing high mesoporous silica (Ti-HMS) synthesized by photo-assisted deposition and impregnation methods. Int. J. Photoenergy 2011, 137328 (2011)

    Article  CAS  Google Scholar 

  11. R.M. Mohamed, E.S. Aazam, Preparation and characterization of core–shell polyaniline/mesoporous Cu2O nanocomposites for the photocatalytic oxidation of thiophene. Appl. Catal. A 480, 100–107 (2014)

    Article  CAS  Google Scholar 

  12. A.A. Baoum, M.S. Amin, R.M. Mohamed, Decoration of SnO2 nanosheets by AgI nanoparticles driven visible light for norfloxacin degradation. Appl. Nanosci. 8, 2093–2102 (2018)

    Article  CAS  Google Scholar 

  13. T.R. Sobahi, M.S. Amin, R.M. Mohamed, Enlargement of photocatalytic efficiency of BaSnO3 by indium doping for thiophene degradation. Appl. Nanosci. 8, 557–565 (2018)

    Article  CAS  Google Scholar 

  14. A.A. Baoum, M.S. Amin, R.M. Mohamed, Development of CuCr2O4 nanocomposite adopting decoration with polyaniline for acridine orange dye degradation. Appl. Nanosci. 10, 1501–1510 (2020)

    Article  CAS  Google Scholar 

  15. T.R. Sobahi, M.S. Amin, Synthesis of ZnO/ZnFe2O4/Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity. Ceram. Inter. 46, 3558–3564 (2020)

    Article  CAS  Google Scholar 

  16. G.G. Lenzi, C.V.B. Fávero, L.M.S. Colpini, H. Bernabe, M.L. Baesso, S. Specchia, O.A.A. Santos, Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods. Desalination 270, 241–247 (2011)

    Article  CAS  Google Scholar 

  17. P. Dhiman, S. Sharma, A. Kumar, M. Shekh, G. Sharma, M. Naushad, Rapid visible and solar photocatalytic Cr(VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO–Fe2O3 nano heterojunctions: mechanism elucidation. Ceram. Int. 46, 12255–12268 (2020)

    Article  CAS  Google Scholar 

  18. S. Ye, M. Yan, X. Tan, J. Liang, G. Zeng, H. Wu, B. Song, C. Zhou, Y. Yang, H. Wang, Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl. Catal. B 250, 78–88 (2019)

    Article  CAS  Google Scholar 

  19. H. Alshaikh, A. Shawky, R.M. Mohamed, J.G. Knight, L. SelvaRoselin, Solution-based synthesis of Co3O4/ZnO p-n heterojunctions for rapid visible-light-driven oxidation of ciprofloxacin. J. Mol. Liq. 334, 116092 (2021)

    Article  CAS  Google Scholar 

  20. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. M. Wu, J.M. Yan, X. Zhang, M. Zhao, Synthesis of g-C3N4 with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution. Appl. Surf. Sci. 354, 196–200 (2015)

    Article  CAS  Google Scholar 

  22. M. Faisal, A.A. Ismail, F.A. Harraz, S.A. Al-Sayari, A.M. El-Toni, M.S. Al-Assiri, Fabrication of highly efficient visible light responsive TiO2/C3N4 nanocomposites with enhanced photocatalytic activity. J. Mol. Struct. 1173, 428–438 (2018)

    Article  CAS  Google Scholar 

  23. G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 198, 347–377 (2016)

    Article  CAS  Google Scholar 

  24. S. Samanta, S. Khilari, D. Pradhan, R. Srivastava, An efficient, visible light driven, selective oxidation of aromatic alcohols and amines with O2 using BiVO4/g-C3N4 nanocomposite: a systematic and comprehensive study toward the development of a photocatalytic process. ACS Sustain. Chem. Eng. 5, 2562–2577 (2017)

    Article  CAS  Google Scholar 

  25. J. Wang, H. Yao, Z. Fan, L. Zhang, J. Wang, S. Zang, Z. Li, Indirect Z-scheme BiOI/ g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl. Mater. Interfaces 8, 3765–3775 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Ren, D. Zeng, W.-J. Ong, Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. Chin. J. Catal. 40, 289–319 (2019)

    Article  CAS  Google Scholar 

  27. W. Zhang, A. Mohamed, W.-J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201914925

    Article  Google Scholar 

  28. W.-J. Ong, K.P.Y. Shak, 2D/2D heterostructured photocatalysts: an emerging platform for artificial photosynthesis. Solar RRL 4, 2000132 (2020)

    Article  CAS  Google Scholar 

  29. B. Zhu, B. Cheng, L. Zhang, J. Yu, Review on DFT calculation of s-triazine-based carbon nitride. Carbon Energy. 1, 32–56 (2019)

    Article  CAS  Google Scholar 

  30. M. Faisal, A.A. Ismail, F.A. Harraz, S.A. Al-Sayari, A.M. El-Toni, M.S. Al-Assiri, Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity. Mater. Des. 98, 223–230 (2016)

    Article  CAS  Google Scholar 

  31. L.A. Al-Hajji, A.A. Ismail, M. Faycal Atitar, I. Abdelfattah, A.M. El-Toni, Construction of heterostructured mesoporous g-C3N4/TiO2 nanocrystals with enhanced photocatalytic performance. Ceram. Int. 45, 1265–1272 (2019)

    Article  CAS  Google Scholar 

  32. M. Alhaddad, A. Shawky, Z.I. Zaki, Reduced graphene oxide-supported PbTiO3 nanospheres : improved ceramic photocatalyst toward enriched photooxidation of thiophene by visible light. Mol. Catal. 499, 111301 (2021)

    Article  CAS  Google Scholar 

  33. M. Alhaddad, A. Shawky, CuS assembled rGO heterojunctions for superior photooxidation of atrazine under visible light. J. Mol. Liquids 318, 114377 (2020)

    Article  CAS  Google Scholar 

  34. F. Cheng, H. Wang, X. Dong, The amphoteric properties of g- C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic reassembly route. Chem. Commun. 51, 7176–7179 (2015)

    Article  CAS  Google Scholar 

  35. F. Cheng, J. Yan, C. Zhou, B. Chen, P. Li, Z. Chen, X. Dong, An alkali treating strategy for the colloidization of graphitic carbon nitride and its excellent photocatalytic performance. J. Colloid Interf. Sci. 468, 103–109 (2016)

    Article  CAS  Google Scholar 

  36. P. Niu, L. Zhang, G. Liu, H. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763–4770 (2012)

    Article  CAS  Google Scholar 

  37. J. Yan, C. Zhou, P. Li, B. Chen, S. Zhang, X. Dong, F. Xi, J. Liu, Nitrogen-rich graphitic carbon nitride: controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Colloid Surf. A 5, 257–264 (2016)

    Article  CAS  Google Scholar 

  38. L. Luo, A. Zhang, M.J. Janik, K. Li, C. Song, X. Guo, Inorganic salt-assisted fabrication of graphitic carbon nitride with enhanced photocatalytic degradation of rhodamine B. Mater. Lett. 188, 130–133 (2017)

    Article  CAS  Google Scholar 

  39. M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. A. Ramasami, M. Reddy, P. Nithyadharseni, B. Chowdari, G. Balakrishna, Gel combustion synthesized vanadium pentoxide nanowire clusters for rechargeable lithium batteries. J. Alloy. Compd. 695, 850–858 (2017)

    Article  CAS  Google Scholar 

  41. A. Ramasami, T. Ravishankar, K. Sureshkumar, M. Reddy, B. Chowdari, T. Ramakrishnappa, G. Balakrishna, Synthesis, exploration of energy storage and electrochemical sensing properties of hematite nanoparticles. J. Alloy. Compd. 671, 552–559 (2016)

    Article  CAS  Google Scholar 

  42. I.A. Mkhalid, A. Shawky, Visible light-active CdSe/rGO heterojunction photocatalyst for improved oxidative desulfurization of thiophene. Ceram. Int. 46, 20769–20776 (2020)

    Article  CAS  Google Scholar 

  43. M. Reddy, G. Prithvi, K. Loh, B. Chowdari, Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl. Mater. Inter. 6, 680–690 (2013)

    Article  CAS  Google Scholar 

  44. S. Petnikota, S. Marka, A. Banerjee, M. Reddy, V. Srikanth, B. Chowdari, Graphenothermal reduction synthesis of exfoliated graphene oxide/iron (II) oxide’composite for anode application in lithium ion batteries. J. Power Sources 293, 253–263 (2015)

    Article  CAS  Google Scholar 

  45. M. Alhaddad, A. Shawky, Pt-decorated ZnMn2O4 nanorods for effective photocatalytic reduction of CO2 into methanol under visible light. Ceram. Int. 47, 9763–9770 (2021)

    Article  CAS  Google Scholar 

  46. C. Yan, L. Liu, Sn-doped V2O5 nanoparticles as catalyst for fast removal of ammonia in air via PEC and PEC-MFC. Chem. Eng. J. 392, 123738 (2020)

    Article  CAS  Google Scholar 

  47. A. Kumar, S.K. Sharm, G. Sharma, M. Naushad, F.J. Stadler, CeO2/g-C3N4/V2O5 ternary nano hetero-structures decorated with CQDs for enhanced photo-reduction capabilities under different light sources: dual Z-scheme mechanism. J. Alloys Compd. 838, 155692 (2020)

    Article  CAS  Google Scholar 

  48. B. Liu, D. Yin, F. Zhao, K.K. Khaing, T. Chen, C. Wu, L. Deng, L. Li, K. Huang, Y. Zhang, Construction of a novel Z-scheme heterojunction with molecular grafted carbon nitride nanosheets and V2O5 for highly efficient photocatalysis. J. Phys. Chem. C. 123, 4193–4203 (2019)

    Article  CAS  Google Scholar 

  49. H. Fang, X. Zhang, J. Wu, N. Li, Y. Zheng, X. Tao, Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 225, 397–405 (2018)

    Article  CAS  Google Scholar 

  50. G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805–809 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. A.A. Ismail, D.W. Bahnemann, Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J. Mater. Chem. 21, 11686–11707 (2011)

    Article  CAS  Google Scholar 

  52. M. Alhaddad, A. Shawky, La-doped NaTaO3 perovskite nanocrystals supported with α-Fe2O3 for sustainable visible-light-driven elimination of ciprofloxacin in water. Ceram. Int. 47, 10688–10695 (2021)

    Article  CAS  Google Scholar 

  53. J. Orilall, M.C. Warrwn, S.C. Kamperman, M. Disalvo, F.J.U. Wiesner, Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 7, 222–228 (2008)

    Article  PubMed  CAS  Google Scholar 

  54. P.C.A. Alberius, K.L. Frindell, R.C. Hayward, E.J. Kramer, G.D. Stucky, B.F. Chmelka, General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14, 3284–3294 (2002)

    Article  CAS  Google Scholar 

  55. M. Klotz, A. Ayral, C. Guizard, L. Cot, Synthesis conditions for hexagonal mesoporous silica layers. J. Mater. Chem. 10, 663–669 (2000)

    Article  CAS  Google Scholar 

  56. J. Fan, S.W. Boettcher, G.D. Stucky, Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol− gel process. Chem. Mater. 18, 6391 (2006)

    Article  CAS  Google Scholar 

  57. W. Tang, X. Wu, D. Li, Z. Wang, G. Liu, H. Liu, Y. Chen, Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: effect of calcination temperature and preparation method. J. Mater. Chem. A 2, 2544–2554 (2014)

    Article  CAS  Google Scholar 

  58. M.-C. Silaghi, C. Chizallet, P. Raybaud, Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater. 191, 82 (2014)

    Article  CAS  Google Scholar 

  59. C.F. Cheng, P.W. Cheng, S.H. Chou, H.H. Cheng, H.K. Yak, Synthesis and characterization of mesoporous MCM-41 silica with thick wall and high hydrothermal stability under mild base solution. Stud. Surf. Sci. Catal. 165, 165–168 (2007)

    Article  CAS  Google Scholar 

  60. M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, H.-B.-R. Lee, B.H. Kim, Y. Jun, One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 5, 8151 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Y.Z. Hong, C.C. Li, G.Y. Zhang, Y.D. Meng, B.X. Yin, Y. Zhao, W.D. Shi, Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant. Chem. Eng. J. 299, 74–84 (2016)

    Article  CAS  Google Scholar 

  62. S. Fang, Y. Xia, K.L. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B Environ. 185, 225–232 (2016)

    Article  CAS  Google Scholar 

  63. W. Liu, J. Shen, X. Yang, Q. Liu, H. Tang, Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting. Appl. Surf. Sci. 456, 369–378 (2018)

    Article  CAS  Google Scholar 

  64. W. Ma, D. Li, B. Wen, X. Ma, D. Jiang, M. Chen, Construction of novel Sr0.4H1.2Nb2O6·H2O/g-C3N4 heterojunction with enhanced visible light photocatalytic activity for hydrogen evolution. J. Colloid Interface Sci. 526, 451–458 (2018)

    Article  CAS  PubMed  Google Scholar 

  65. C.D. Jadhav, B. Pandit, S.S. Karade, B.R. Sankapal, P.G. Chavan, Enhanced field emission properties of V2O5/MWCNTs nanocomposite. Appl. Phys. A 124, 794 (2018)

    Article  CAS  Google Scholar 

  66. F. Coustier, J.M. Lee, S. Passerini, W.H. Smyrl, V2O5 aerogel-like lithium intercalation host. Solid State Ionics 116, 279–291 (1999)

    Article  CAS  Google Scholar 

  67. N. Kerkouri, M. Haddad, M. Et-Tabirou, A. Chahine, L. Laanab, Raman FTIR, EPR and optical absorption spectral studies on V2O5-doped cadmium phosphate glasses. Phys. B 406, 3142–3148 (2011)

    Article  CAS  Google Scholar 

  68. E. Gillis, E. Boesman, EPR-Studies of V2O5 single crystals. I. defect centers in pure, non-stoichiometric Vanadium pentoxide. Phys. Stat. Sol. (B) 14, 337–347 (1966)

    Article  CAS  Google Scholar 

  69. M. Vanhaelst, P. Clauws, EPR spectrum of the oxygen vacancy in single crystals V2O5. Phys. Stat. Sol. (B) 87, 719–723 (1978)

    Article  CAS  Google Scholar 

  70. M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, Enhanced photocatalytic performance of the Graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Appl. Mater. Interfaces 7, 14905–14911 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. T. Jayaraman, S. Arumugam Raja, A. Priya, M. Jagannathan, M. Ashokkumar, Synthesis of a visible-light active V2O5/g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material. New J. Chem. 39, 1367–1374 (2015)

    Article  CAS  Google Scholar 

  72. Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, W. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl. Catal. B Environ. 180, 663–673 (2016)

    Article  CAS  Google Scholar 

  73. Q. Liu, C. Fan, H. Tang, X. Sun, J. Yang, X. Cheng, One-pot synthesis of g-C3N4/V2O5 composites for visible light-driven photocatalytic activity. Appl. Surf. Sci. 358, 188–195 (2015)

    Article  CAS  Google Scholar 

  74. R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq. 198, 409–412 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Taif Researchers Supporting Project (TURSP-2020/42), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization, Investigation, Methodology, Validation, Reviewing & Editing, Supervision. SMA: Formal analysis, Investigation, Software, Reviewing & Editing. MSA: Formal analysis, Visualization, Writing original draft. ZIZ: Formal analysis, Funding acquisition, Project administration.

Corresponding author

Correspondence to Ahmed Shawky.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shawky, A., Albukhari, S.M., Amin, M.S. et al. Mesoporous V2O5/g-C3N4 Nanocomposites for Promoted Mercury (II) Ions Reduction Under Visible Light. J Inorg Organomet Polym 31, 4209–4221 (2021). https://doi.org/10.1007/s10904-021-02047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02047-5

Keywords

Navigation