Skip to main content
Log in

On the finite element method for solving the oblique derivative boundary value problems and its application in local gravity field modelling

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The paper presents local gravity field modelling in spatial domain using the finite element method (FEM). FEM as a numerical method is applied for solving the geodetic boundary value problem with oblique derivative boundary conditions (BC). For such a problem, we derive a new numerical scheme where the oblique derivative BC are considered directly at computational nodes on the discretized Earth’s topography. Then, the developed FEM approach is tested in several artificial testing experiments as well as by a reconstruction of a known harmonic function above the extremely complicated Earth’s topography in the Himalayas. A main numerical experiment is focused on very detailed local gravity field modelling in Slovakia using terrestrial gravity data. The high horizontal resolution 100 \(\times \) 100 m and non-uniform resolution in the radial direction has resulted in a 3D unstructured mesh of finite elements with 5,287,500,000 unknowns. Large-scale parallel computations were performed on a parallel cluster using 1.5 TB of distributed memory. The obtained local quasigeoid model is tested at 403 GNSS-levelling benchmarks. The standard deviation of residuals 2.77 cm, which decreases to 2.54 cm after excluding 7 outliers, indicates its high precision. However, depicted residuals show their low-frequency character with amplitudes about ± 3 cm. As a by-product, the first and second derivatives of the obtained disturbing potential in the radial direction are also evaluated in several altitude levels as well as on the Earth’s surface. Finally, the paper presents a comparison of the obtained FEM solution with the recent local quasigeoid models in Slovakia computed in the spatial as well as spectral domain. It illustrates a practical contribution of the presented FEM approach for precise local gravity field modelling, especially in high mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All datasets generated and/or analysed within the testing experiments (Sects 4.1 and 4.2) are available from the corresponding author. The input data used in Sect. 4.3 are not open for public as the authors do not have the rights to provide them to a third party. The output data of Sect. 4.3 are available from the corresponding author on reasonable request.

References

  • Barrett JW, Elliott CHM (1985) Fixed mesh finite element approximations to a free boundary problem for an elliptic equation with an oblique derivative boundary condition. Comput Math Appl 11(4):335–345

    Article  Google Scholar 

  • Bauer F (2004) An alternative approach to the oblique derivative problem in potential theory. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern. Shaker Verlag, Aachen, Germany

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30 PLUS. Mar Geodesy 32(4):355–371

    Article  Google Scholar 

  • Bitzadse AV (1968) Boundary-value problems for second-order elliptic equations. North-Holland, Amsterdam

    Google Scholar 

  • Bjerhammar A, Svensson L (1983) On the geodetic boundary value problem for a fixed boundary surface. A satellite approach. Bull Geod 57(1–4):382–393

    Article  Google Scholar 

  • Brenner SC, Scott LR (2002) The mathematical theory of finite element methods. Springer, New York

    Book  Google Scholar 

  • Bruinsma S, Förste C, Abrikosov O, Lemoine J, Marty J, Mulet S, Rio M, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514. https://doi.org/10.1002/2014GL062045

    Article  Google Scholar 

  • Bucha B, Janák J (2013) A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Comput Geosci 56:186–196. https://doi.org/10.1016/j.cageo.2013.03.012

    Article  Google Scholar 

  • Bucha B, Janák J, Papčo J, Bezděk A (2016) High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophys J Int 207(2):949–966

    Article  Google Scholar 

  • Čunderlík R, Mikula K (2010) Direct BEM for high-resolution gravity field modelling. Stud Geophys Geod 54(2):219–238

    Article  Google Scholar 

  • Čunderlík R, Mikula K, Mojžeš M (2008) Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geod 82:15–29

    Article  Google Scholar 

  • Čunderlík R, Mikula K, Špir R (2012) An oblique derivative in the direct BEM formulation of the fixed gravimetric BVP. IAG Sympos 137:227–231

    Google Scholar 

  • Čunderlík R, Medl’a M, Mikula K (2020) Local quasigeoid modelling in Slovakia using the finite volume method on the discretized Earth’s topography. Contrib Geophys Geodesy (accepted in June 2020)

  • Droniou J, Medl’a M, Mikula K (2019) Design and analysis of finite volume methods for elliptic equations with oblique derivatives; application to Earth gravity field modeling. J Comput Phys 398:108876. https://doi.org/10.1016/j.jcp.2019.108876

    Article  Google Scholar 

  • Fašková Z (2008) Numerical methods for solving geodetic boundary value problems. PhD Thesis, SvF STU, Bratislava, Slovakia

  • Fašková Z, Čunderlík R, Janák J, Mikula K, Šprlák M (2007) Gravimetric quasigeoid in Slovakia by the finite element method. Kybernetika 43(6):789–796

    Google Scholar 

  • Fašková Z, Čunderlík R, Mikula K (2010) Finite element method for solving geodetic boundary value problems. J Geod 84(2):135–144

    Article  Google Scholar 

  • Förste, Ch, Bruinsma, SL, Abrikosov O, Lemoine J-M, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. http://doi.org/10.5880/icgem.2015.1

  • Freeden W (1987) Harmonic splines for solving boundary value problems of potential theory. In: Mason JC, Cox MG (eds) Algorithms for approximation, vol 10. The Institute of Mathematics and its Applications, conference series. Clarendon Press, Oxford, pp 507–529

    Google Scholar 

  • Freeden W, Gerhards C (2013) Geomathematically oriented porential theory. CRC Press, Boca Raton

    Google Scholar 

  • Freeden W, Kersten H (1981) A constructive approximation theorem for the oblique derivative problem in potential theory. Math Methods Appl Sci 3:104–114

    Article  Google Scholar 

  • Freeden W, Michel V (2004) Multiscale potential theory (with applications to geoscience). Birkhäuser, Boston

    Book  Google Scholar 

  • Freeden W, Nutz H (2017) On the solution of the oblique derivative problem by constructive Runge–Walsh concepts. In: Pesenson I, Le Gia Q, Mayeli A, Mhaskar H, Zhou DX (eds) recent applications of harmonic analysis to function spaces, differential equations, and data science. Applied and numerical harmonic analysis. Birkhäuser, Cham

    Google Scholar 

  • Gallistl D (2019) Numerical approximation of planar oblique derivative problems in nondivergence form. Math. Comp. 88:1091–1119

    Article  Google Scholar 

  • Gutting M (2007) Fast multipole methods for oblique derivative problems. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern. Shaker Verlag, Aachen, Germany

  • Gutting M (2012) Fast multipole accelerated solution of the oblique derivative boundary value problem. Int J Geomath 3:223–252

    Article  Google Scholar 

  • Hirt C, Claessens SJ, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultra-high resolution picture of 1 Earth’s gravity field. Geophys Res Lett 40

  • Holota P (1997) Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation. J Geod 71:640–651

    Article  Google Scholar 

  • Kawecki E (2019) A discontinuous Galerkin finite element method for uniformly elliptic two dimensional oblique boundary-value problems. SIAM J Numer Anal 57(2):751–778

    Article  Google Scholar 

  • Keller W (1995) Finite differences schemes for elliptic boundary value problems. Section IV Bulletin IAG, No, p 1

  • Klees R (1995) Boundary value problems and approximation of integral equations by finite elements. Manuscripta Geodaetica 20:345–361

    Google Scholar 

  • Klees R, van Gelderen M, Lage C, Schwab C (2001) Fast numerical solution of the linearized Molodensky problem. J Geodesy 75:349–362

    Article  Google Scholar 

  • Klobušiak M, Leitmannová K, Ferianc D (2005) Realizácia záväzných transformáciínárodných referençých súradnicových a výškového Systému do Európskeho Terestrického Referençého Systému 1989. http://www.etrs.sk/HELP/Transformacie (in Slovak)

  • Koch KR, Pope AJ (1972) Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull Geod 46:467–476

    Article  Google Scholar 

  • Lehmann R, Klees R (1999) Numerical solution of geodetic boundary value problems using a global reference field. J Geodesy 73:543–554

    Article  Google Scholar 

  • Lieberman GM (2013) Oblique derivative problems for elliptic equations. World Scientific Publishing Co. Pte. Ltd., Hackensac

    Book  Google Scholar 

  • Macák M, Minarechová Z, Mikula K (2014) A novel scheme for solving the oblique derivative boundary-value problem. Stud Geophys Geo 58(4):556–570

    Article  Google Scholar 

  • Macák M, Čunderlík R, Mikula K, Minarechová Z (2015) An upwind-based scheme for solving the oblique derivative boundary-value problem related to the physical geodesy. J Geodetic Sci 5(1):15

    Article  Google Scholar 

  • Macák M, Minarechová Z, Čunderlík R, Mikula K (2020) The finite element method as a tool to solve the oblique derivative boundary value problem in geodesy. Tatra Mt Math Publ 75(1):63–80

    Google Scholar 

  • Macák M, Mikula K, Minarechová Z (2012) Solving the oblique derivative boundary-value problem by the finite volume method. In: ALGORITMY 2012, 19th conference on scientific computing, Podbanske, Slovakia, September 9–14, 2012, Proceedings of contributed papers and posters, Publishing House of STU, pp 75–84

  • Majkráková M, Papčo J, Zahorec P, Droščák B, Mikuška J, Marušiak I (2016) An analysis of methods for gravity determination and their utilization for the calculation of geopotential numbers in the Slovak national leveling network. Contrib Geophys Geodesy 46(3):179–202. https://doi.org/10.1515/congeo-2016-0012

    Article  Google Scholar 

  • Marušiak I, Mikuška J, Papčo J, Zahorec P, Pašteka R (2015) CBA2G (Complete Bouguer Anomaly To Gravity), program for calculation of the gravity acceleration from complete Bouguer anomaly, program guide. Manuscript, G-trend Ltd

  • Medl’a M, Mikula K, Čunderlík R, Macák M (2018) Numerical solution to the oblique derivative boundary value problem on non-uniform grids above the Earth topography. J Geod 92:1–19

    Article  Google Scholar 

  • Meissl P (1981) The use of finite elements in physical geodesy. Report 313, Geodetic Science and Surveying, The Ohio State University

  • Minarechová Z, Macák M, Čunderlík R, Mikula K (2015) High-resolution global gravity field modelling by the finite volume method. Stud Geophys Geod 59:1–20

    Article  Google Scholar 

  • Miranda C (1970) Partial differential equations of elliptic type. Springer, Berlin

    Book  Google Scholar 

  • Mráz D, Bořík M, Novotný J (2016) On the convergence of the h-p finite element method for solving boundary value problems in physical geodesy. In: Freymueller JT, Sánchez L (eds) International symposium on Earth and environmental sciences for future generations. International Association of Geodesy Symposia, vol 147. Springer, Cham

  • Pašteka R, Zahorec P, Kušnirák D, Bošanský M, Papčo J, Szalaiová V, Krajňák M, Ivan M, Mikuška J, Bielik MM (2017) High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields. Contrib Geophys Geodesy 47(2):81–94. https://doi.org/10.1515/congeo-2017-0006

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/2011JB008916

    Article  Google Scholar 

  • Reddy JN (2006) An introduction to the finite element method, 3rd edn. McGraw-Hill Education, New York

    Google Scholar 

  • Sánchez L, Čunderlík R, Dayoub N, Mikula K, Minarechová Z, Šíma Z, Vatrt V, Vojtíšková M (2016) A conventional value for the geoid reference potential W0. J Geodesy 90(9):815–835. https://doi.org/10.1007/s00190-016-0913-x

    Article  Google Scholar 

  • Shaofeng B, Dingbo C (1991) The finite element method for the geodetic boundary value problem. Manuscr Geod 16:353–359

    Google Scholar 

  • Šprlák M, Fašková Z, Mikula K (2011) On the application of the coupled finite-infinite element method to the geodetic boundary value problem. Stud Geophys Geod 55:479–487

    Article  Google Scholar 

  • Zahorec P, Papčo J, Mikolaj M, Pašteka R, Szalaiová V (2014) The role of near topography and building effects in vertical gravity gradients approximation. First Break 32(1):65–71

    Article  Google Scholar 

  • Zahorec P, Mikuška J, Papčo J, Marušiak I, Karcol R, Pašteka R (2015) Towards the measurement of zero vertical gradient of gravity on the Earth’s surface. Stud Geophys Geod 59:524–537

    Article  Google Scholar 

  • Zahorec P, Marušiak I, Mikuška J, Pašteka R, Papčo J (2017) Numerical calculation of terrain correction within the bouguer anomaly evaluation (Program Toposk), (Chapter 5). In: Pašteka R, Ján M, Bruno M (eds) Understanding the bouguer anomaly: a gravimetry puzzle. Elsevier, pp 79–92. ISBN 978-0-12-812913-5 https://doi.org/10.1016/B978-0-12-812913-5.00004-X

  • Zahorec P, Pašteka R, Mikuška J, Szalaiová V, Papčo J, Kušnirák D, Pánisová J, Krajňák M, Vajda P, Bielik M, Marušiak I (2017) National gravimetric database of the Slovak Republic (chapter 7). In: Pašteka R, Ján M, Bruno M (eds) Understanding the bouguer anomaly: a gravimetry puzzle. Elsevier, pp 113–125. ISBN 978-0-12-812913-5,

Download references

Acknowledgements

This work was supported by Grants APVV-15-0522, APVV-19-0460 and VEGA 1/0486/20. We would like express our thanks to Pavol Zahorec (SAV Banská Bystrica) and Juraj Papčo (STU Bratislava) for providing input gravity disturbances as well as measured vertical gravity gradients. We also thank the Geodetic and Cartographic Institute Bratislava for providing the GNSS/levelling data and to Blažej Bucha (STU Bratislava) for providing the local quasigeoid model in Slovakia published in Bucha et al. (2016).

Author information

Authors and Affiliations

Authors

Contributions

Zuzana Minarechová contributed to develop the theory and wrote the manuscript with support from Róbert Čunderlík. Marek Macák developed the theory and performed the numerical simulations. Róbert Čunderlík carried out the experiment and analysed the data. Karol Mikula devised the project. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Zuzana Minarechová.

Appendix

Appendix

See Fig. 18.

Fig. 18
figure 18

The first and second derivatives of the disturbing potential in the radial direction evaluated in 5 altitude levels (approximately at 500 m, 1 km, 2 km, 5 km and 10 km above the reference ellipsoid)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minarechová, Z., Macák, M., Čunderlík, R. et al. On the finite element method for solving the oblique derivative boundary value problems and its application in local gravity field modelling. J Geod 95, 70 (2021). https://doi.org/10.1007/s00190-021-01522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01522-8

Keywords

Navigation