Skip to main content
Log in

The Square Root of a Parabolic Operator

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let \(L(t) = - \mathrm{div} \left( A(x,t) \nabla _x \right) \) for \(t \in (0, \tau )\) be a uniformly elliptic operator with boundary conditions on a domain \(\Omega \) of \(\mathbb {R}^d\) and \(\partial = \frac{\partial }{\partial t}\). Define the parabolic operator \({{\mathcal {L}}}= \partial + L\) on \(L^2(0, \tau , L^2(\Omega ))\) by \(({{\mathcal {L}}}u)(t) := \frac{\partial u(t)}{\partial t} + L(t)u(t)\). We assume a very little of regularity for the boundary of \(\Omega \) and we assume that the coefficients A(xt) are measurable in x and piecewise \(C^\alpha \) in t (uniformly in \(x \in \Omega \)) for some \(\alpha > \frac{1}{2}\). We prove the Kato square root property for \(\sqrt{{{\mathcal {L}}}}\) and the estimate

$$\begin{aligned}&\Vert \sqrt{{{\mathcal {L}}}}\, u \Vert _{L^2(0,\tau , L^2(\Omega ))} \approx \Vert \nabla _x u \Vert _{L^2(0,\tau , L^2(\Omega ))} + \Vert u \Vert _{H^{\frac{1}{2}}(0,\tau , L^2(\Omega ))}\\&\qquad + \left( \int _0^\tau \Vert u(t) \Vert _{L^2(\Omega )}^2\, \frac{dt}{t} \right) ^{1/2}. \end{aligned}$$

We also prove \(L^p\)-versions of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Remember that \(\partial \) is invertible, hence the graph norm of \(\sqrt{\partial } \) equivalent to \(\Vert \sqrt{\partial }\, u \Vert _{{\mathcal {H}}}\).

  2. one starts from the resolvent formula \(((\lambda I + L)^{-1}u)(t) = (\lambda I + L(t))^{-1}u(t)\) and then by integration along an appropriate contour to define the holomorphic functional calculus one obtains such a formula.

  3. This is stated in [2] and [10] on the interval \((0,\infty )\) instead of \((0, \tau )\). One either uses a similar retraction and coretraction argument used their to deal directly with \((0,\tau )\) or use a cut-off argument around the point \(\tau \). See also [7] for interpolation results in the scalar case.

References

  1. Achache, M., Ouhabaz, E.M.: Lions’ maximal regularity problem with \(H^{\frac{1}{2}}\)-regularity in time. J. Differ. Equ. 266(6), 3654–3678 (2019)

    Article  Google Scholar 

  2. Amann, H.: Anisotropic Function Spaces and Maximal Regularity for Parabolic Problems. Part 1. Function Spaces. Jindrich Necas Center for Mathematical Modeling Lecture Notes, vol 6. Matfyzpress, Prague (2009). ISBN: 978-80-7378-089-0

  3. Arendt, W., Chill, R., Fornaro, S., Poupaud, C.: \(L^p\)-maximal regularity for non-autonomous evolution equations. J. Differ. Equ. 237(1), 1–26 (2007)

    Article  Google Scholar 

  4. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, Ph: The solution of the Kato square root problem for second order elliptic operators on \({\mathbb{R}}^n\). Ann. Math. (2) 156(2), 633–654 (2002)

    Article  MathSciNet  Google Scholar 

  5. Auscher, P., Egert, M., Nyström, K.: Boundary value problems for parabolic systems via first order approach. J. Eur. Math. Soc. (JEMS) 22(9), 2943–3058 (2020)

    Article  MathSciNet  Google Scholar 

  6. Axelsson, A., Keith, S., McIntosh, A.: Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math. 163(3), 455–497 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bechtel, S., Egert, M.: Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets. J. Fourier Anal. Appl. 25(5), 2733–2781 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bechtel, S., Egert, M., Haller-Dintelmann, R.: The Kato square root problem on locally uniform domains. Adv. Math. 375, 107410 (2020)

  9. Coifman, R.R., Weiss, G.: Transference Methods in Analysis, Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics 31. AMS, Providence (1977)

    Google Scholar 

  10. Denk, R., Kaip, M.: General Parabolic Mixed Order Systems in \(L_p\) and Applications. Operator Theory: Advances and Applications, vol. 239. Birkhäuser/Springer, Cham (2013). ISBN: 978-3-319-01999-4

  11. Dier, D.: Non-autonomous Cauchy problems governed by forms: maximal regularity and invariance. PhD Thesis. Universität Ulm (2014)

  12. Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196(2), 189–201 (1987)

    Article  MathSciNet  Google Scholar 

  13. Egert, M., Haller-Dintelmann, R., Tolksdorf, P.: The Kato square root problem for mixed boundary conditions. J. Funct. Anal. 267(5), 1419–1461 (2014)

    Article  MathSciNet  Google Scholar 

  14. Haak, B., Ouhabaz, E.M.: Maximal regularity for non-autonomous evolution equations. Math. Ann. 363(3–4), 1117–1145 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces. Vol. II. Probabilistic Methods and Operator Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 67. Springer, Cham (2017)

  16. Fackler, S.: J.-L. Lions’ problem concerning maximal regularity of equations governed by non-autonomous forms. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(3), 699–709 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kato, T.: Fractional powers of dissipative operators II. J. Math. Soc. Jpn. 14, 242–248 (1962)

    Article  MathSciNet  Google Scholar 

  18. Lamberton, D.: Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces \(L^p\). J. Funct. Anal. 72(2), 252–262 (1987)

    Article  MathSciNet  Google Scholar 

  19. Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications: vol. I. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York (1972)

  20. Nyström, K.: Square functions estimates and the Kato problem for second order parabolic operators in \({\mathbb{R}}^{n+1}\). Adv. Math. 293, 1–36 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ouhabaz, E. M.: Analysis of Heat Equations on Domains, London Math. Soc Monographs, vol. 31. Princeton University Press (2005)

  22. Ouhabaz, E.M., Spina, C.: Maximal regularity for non-autonomous Schrödinger type equations. J. Differ. Equ. 248(7), 1668–1683 (2010)

    Article  Google Scholar 

  23. Ouhabaz, E.M., Spina, C.: Riesz transforms of some parabolic operators. AMSI International Conference on Harmonic Analysis and Applications. Proc. Centre Math. Appl. Austral. Nat. Univ., pp. 45, pp. 115–123. Austral. Nat. Univ., Canberra (2013)

  24. Prüss, J., Simonett, G.: \(H^\infty \)-calculus for the sum of non-commuting operators. Trans. Am. Math. Soc. 359(8), 3549–3565 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Sebastian Bechtel for several interesting remarks and comments on an earlier version of this paper and Moritz Egert and Sylvie Monniaux for stimulating discussions. Thanks are due also to the reviewer for his/her comments on the paper.

This research is partly supported by the ANR project RAGE, ANR-18-CE-0012-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Maati Ouhabaz.

Additional information

Communicated by Mieczyslaw Mastylo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouhabaz, E.M. The Square Root of a Parabolic Operator. J Fourier Anal Appl 27, 59 (2021). https://doi.org/10.1007/s00041-021-09863-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09863-w

Keywords

Navigation