Skip to main content
Log in

A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cancer is one of the leading causes of death worldwide and also the main obstacle of accelerating anticipation. It is globally recognized as overwhelmingly challenging in terms of clinical management. Cancer is taken into account because a prime lethal disease affects different organs of the body. Even with the rapid improvements in the medical sciences, there are no proper medicines to treat specific kinds of cancer. One of the fundamental issues within the malignant growth treatment is the side effect because of conventional treatment systems. Nanotechnology might be an extremely encouraging field for the therapeutic and drug areas; thus, it assumes a crucial part in improving humankind’s satisfaction. In the infield of nanotechnology, a plant-mediated fusion of metal nanoparticles has been developed as a substitute to defeat the limitations of traditional synthesis approaches similar to physical and synthetic strategies. These tunable properties of nanomaterials make them progressed apparatuses in the biomedical platform particularly for the improvement of new diagnostics and focused on therapeutics for malignancy.This review incorporates the characterization of nanoparticles with size and shape and features critical uses of biosynthesized green nanomaterials in cancer theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Shah, S. C., Kayamba, V., Richard, M. P., & Douglas, H. (2019). Cancer control in low- and middle-income countries: Is it time to consider screening. Journal of Global Oncology, 5, 1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN. International Journal of Cancer, 136(5), 359–386.

    Article  Google Scholar 

  3. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal Clinicians, 61(2), 69–90.

    Google Scholar 

  4. Hollstein, M., Alexandrov, L., Wild, C., Ardin, M., & Zavadil, J. (2017). Base changes in tumor DNA have the power to reveal the causes and evolution of cancer. Oncogene, 36(2), 158–167.

    Article  CAS  PubMed  Google Scholar 

  5. Available from: http://www.cancer.gov/8 March 2018.

  6. Steward, W. P., & Brown, K. (2013). Cancer chemoprevention: a rapidly evolving field. British Journal of Cancer, 109(1), 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amawi, H., Ashby, C. R., & Tiwari, A. K. (2017). Cancer chemoprevention through dietary flavonoids: What’s limiting? Chinese Journal of Cancer, 36(1), 50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Flora, S. D., & Ferguson, L. R. (2005). Overview of mechanisms of cancer chemopreventive agents. Mutation Research, 591(1), 8–15.

    Article  PubMed  Google Scholar 

  9. Sharon, M., Oza, G., & Pandey, S. (2012). Extracellular synthesis of gold nanoparticles using Pseudomonas denitrificans and comprehending its stability. Journal of Microbiology and Biotechnology Research, 2(4), 493–499.

    Google Scholar 

  10. Kawazoe, Y., and Meech, J.A., (2005) Welcome to IPPM'03-Nanotechnology: Do good things really come in small packages? Proc. 4th Int. Conf. Intelligent Processing and Manufacturing of Materials. Meech J, Kawazoe Y, Kumar V, Maguire JF (eds.). DSEtech Publications, Inc. Lancaster, pp 3-11.

  11. Treguer, M., Cointet, C., Remita, H., Khatouri, J., Mostafavi, M., Amblard, J., Belloni, J., & Keyzer, R. (1998). Dose rate effects on the radiolytic synthesis of gold-silver bimetallic clusters in solution. The Journal of Physical Chemistry, 102(22), 4310–4321.

    Article  CAS  Google Scholar 

  12. Navaladian, S., Viswanathan, B., Viswanath, R. P., & Varadarajan, T. K. (2007). Thermal decomposition as route for silver nanoparticles. Nanoscale Research Letters, 2(1), 44–48.

    Article  CAS  Google Scholar 

  13. Rawat, M., Singh, D., & Saraf, S. (2006). Nanocarriers: promising vehicle for bioactive drugs. Biological & Pharmaceutical Bulletin, 29(9), 1790–1798.

    Article  CAS  Google Scholar 

  14. Chow, E. K., & Ho, D. (2013). Cancer nanomedicine: from drug delivery to imaging. Science Translational Medicine, 5, 216–214.

    Article  Google Scholar 

  15. Prabhu, P., & Patravale, V. (2012). The upcoming field of theranostic nanomedicine: an overview. Journal of Biomedical Nanotechnology, 8(6), 859–882.

    Article  CAS  PubMed  Google Scholar 

  16. Melchert, W. R., Reis, B. F., & Rocha, F. R. (2012). Green chemistry and the evolution of flow analysis A review. Analytica Chimica Acta, 714, 8–19.

    Article  CAS  PubMed  Google Scholar 

  17. Abdelghany, T. M., Al-Rajhi, A. M. H., Al Abboud, M. A., Alawlaqi, M. M., Magdah, A. G., Helmy, E. A. M., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: About future directions A review. Bionanoscience, 8(1), 5–16.

    Article  Google Scholar 

  18. Rout, Y., Behera, S., Ojha, A. K., & Nayak, P. L. (2012). Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. Journal of Microbiology and Antimicrobials, 4(6), 103–109.

    Article  CAS  Google Scholar 

  19. Ruiz, R. B., & Hernández, P. S. (2016). Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence. Maturitas, 94, 13–19.

    Article  Google Scholar 

  20. Das, R. K., Pachapur, V. L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., Cledon, M., Dalila, L. M. A., Shrma, S. J., & Brar, S. K. (2017). Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnology for Environmental Engineering, 2(1), 18.

    Article  Google Scholar 

  21. Bhanot, A., Sharma, R., & Noolvi, M. N. (2011). Natural sources as potential anti-cancer agents: A review. International Journal of Phytomedicine, 3, 9–26.

    Google Scholar 

  22. Song, Y. H., Sun, H., Zhang, A., Yan, G., Han, Y., & Wang, X. (2014). Plant derived natural products as leads to anti-cancer drugs. Journal of Medicinal Plants Research, 2, 6–15.

    Google Scholar 

  23. Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933–937.

    Article  CAS  Google Scholar 

  24. Song, J. Y., Kwon, E. Y., & Kim, B. S. (2010). Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess and Biosystems Engineering, 33(1), 159–164.

    Article  PubMed  Google Scholar 

  25. Alexandridis, P. (2011). Gold nanoparticle synthesis, morphology control, and stabilization by functional polymers. Chemical Engineering and Technology, 4, 15–38.

    Article  Google Scholar 

  26. Rai, M., & Yadav, A. (2013). Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET Nanobiotechnology, 7(3), 117–124.

    Article  CAS  PubMed  Google Scholar 

  27. Irvani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical, and biological methods. Research in Pharmaceutical Sciences, 9(6), 385–406.

    Google Scholar 

  28. Meyers, M. A., Mishra, A., & Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51(4), 427–556.

    Article  CAS  Google Scholar 

  29. Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Critical Reviews in Biotechnology, 32(1), 49–73.

    Article  CAS  PubMed  Google Scholar 

  30. Bankar, A., Joshi, B., Kumar, A. R., & Zinjarde, S. (2012). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 368, 58–63.

    Article  Google Scholar 

  31. Velusamy, P., Das, J., Pachaiappan, R., Vaseeharan, B., & Pandian, K. (2015). Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Industrial Crops and Products, 66, 103–109.

    Article  CAS  Google Scholar 

  32. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., & Yang, X. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18, 104–105.

    Article  Google Scholar 

  33. Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22(2), 577–583.

    Article  CAS  PubMed  Google Scholar 

  34. Venkatesan, B., Subramanian, V., Tumala, A., & Vellaichamy, E. (2014). Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pacific Journal of Tropical Medicine, 7(1), 294–300.

    Article  Google Scholar 

  35. Padma, P. (2016). Green synthesis of silver nanobioconjugates from Piper betle leaves and its anticancer activity on a549 cells. Asian Journal of Pharmaceutical and Clinical Research, 9(1), 252–257.

    Google Scholar 

  36. Gottimukkala, K. S. V., Reddy, H. P., & Zamare, D. (2017). Green synthesis of iron nanoparticles using green tea leaves extract. Journal of Nanomedicine and Biotherapeutic Discovery, 7(1), 1–4.

    Google Scholar 

  37. Amina, M., Al Musayeib, N. M., Alarfaj, N. A., El-Tohamy, M. F., Oraby, H. F., & Al Hamoud, G. A. (2020). Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells, and photocatalysis potentials. PLoS One, 15(8), 1–23.

    Article  Google Scholar 

  38. Zhang, D., Ma, X.-l., Gu, Y., Huang, H., & Zhang G.-w. (2020). Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry, 8, 1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pantidos, N., & Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi, and plants. Journal of Nanomedicine and Nanotechnology, 5, 233.

    Article  Google Scholar 

  40. Castro, L., Blázquez, M. L., Muñoz, J., González, F., & Ballester, A. (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnology, 7(3), 109–116.

    Article  CAS  PubMed  Google Scholar 

  41. Husain, S., Sardar, M., & Fatma, T. (2015). Screening of cyanobacterial extracts for the synthesis of silver nanoparticles. World Journal of Microbiology and Biotechnology, 31(8), 1279–1283.

    Article  PubMed  Google Scholar 

  42. Darroudi, M., Hoseini, S. J., & Kazemi, O. R. (2014). Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceramics International, 40(5), 7425–7430.

    Article  CAS  Google Scholar 

  43. Kahzad, N., & Salehzadeh, A. (2020). Green synthesis of CuFe2O4@Ag nanocomposite using the Chlorella Vulgaris and evaluation of its effect on the expression of Nora efflux pump gene among Staphylococcus aureus strains. Biological Trace Element Research, 198(1), 359–370.

    Article  CAS  PubMed  Google Scholar 

  44. Bregoli, L., Movia, D., Gavigan-Imedio, J. D., Lysaght, J., Reynolds, J., & Prina-Mello, A. (2016). Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine: Nanotechnology Biologie et Médecine, 12(1), 81–103.

    Article  CAS  Google Scholar 

  45. Mishra, A., Tripathy, S. K., & Il Yun, S. (2012). Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochemistry, 47(5), 701–711.

    Article  CAS  Google Scholar 

  46. Babu, P. J., Sharma, P., Saranya, S., & Bora, U. (2013). Synthesis of gold nanoparticles using ethonolic leaf extract of Bacopa monnieri and UV irradiation. Materials Letters, 93, 431–434.

    Article  CAS  Google Scholar 

  47. Seo, J. M., Kim, E. B., Hyun, M. S., Kim, B. B., & Park, T. J. (2015). Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids and Surfaces B: Biointerfaces, 135, 27–34.

    Article  CAS  PubMed  Google Scholar 

  48. Saranyaadevi, K., Subha, V., & Ernest ravindran, R.S., and renganathan, S. (2014). Green synthesis and characterization of silver nanoparticle using leaf extract of Capparis zeylanica. Asian Journal of Pharmaceutical and Clinical Research, 7(2), 44–48.

    CAS  Google Scholar 

  49. Jores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., & Mader, K. (2004). Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. Journal of Controlled Release, 95(2), 217–227.

    Article  CAS  PubMed  Google Scholar 

  50. Desai, R., Mankad, V., Gupta, S. K., & Jha, P. K. (2012). Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanoscience and Nanotechnology Letters, 4(1), 30–34.

    Article  CAS  Google Scholar 

  51. Gunalan, S., Sivaraj, R., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Materials Research Bulletin, 46, 2560–2566.

    Article  Google Scholar 

  52. Amendola, V., Bakr, O. M., & Stellacci, F. (2010). A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics., 5(1), 85–97.

    Article  CAS  Google Scholar 

  53. Ravichandrana, V., Vasanthib, S., Shalinic, S., Adnan, S., Ali, S., Tripathyd, M., & Paliwala, N. (2019). Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results in Physics, 15, 1–8.

    Google Scholar 

  54. Murugan, A., & Shanmugasundaram, K. K. (2014). Biosynthesis and characterization of silver nanoparticles using the aqueous extract of Vitex negundo. linn. World Journal of Pharmaceutical Sciences, 3(8), 1385–1393.

    CAS  Google Scholar 

  55. Meng, Y., Yao, C., Xue, S., & Yang, H. (2014). Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresource Technology, 151, 347–354.

    Article  CAS  PubMed  Google Scholar 

  56. Govindaraju, K., Tamilselvan, S., Kiruthiga, V., & Singaravelu, G. (2010). Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides, 3, 349–399.

    Google Scholar 

  57. Zhan, G., Huang, J., Lin, L., Lin, W., Emmanuel, K., & Li, Q. (2011). Synthesis of gold nanoparticles by Cacumen platycladi leaf extract and its simulated solution: Toward the plant-mediated biosynthetic mechanism. Journal of Nanoparticle Research, 13(10), 4957–4968.

    Article  CAS  Google Scholar 

  58. Noruzi, M. (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioprocess and Biosystems Engineering, 38(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  59. Arumugama, A., Karthikeyan, C., Hameed, A. S. H., Gopinath, K., Gowri, S., & Karthika, V. (2015). Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering, 49, 408–415.

    Article  Google Scholar 

  60. Yelil Arasi, A., Hema, M., Tamilselvi, P., & Anbarasan, R. (2012). Synthesis and characterization of SiO2 nanoparticles by sol-gel process. Indian Journal of Science and Technology, 1(1), 6–10.

    Google Scholar 

  61. Mukhopadhyay, R., Kazi, J., & Chatterjee Debnath, M. (2018). Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: Evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomedicine & Pharmacotherapy, 97, 1373–1385.

    Article  CAS  Google Scholar 

  62. Umer, A., Naveed, S., & Ramzan, N. (2012). selection of a suitable method for the synthesis of copper nanoparticles. Nano: Brief Reports And Reviews, 7(5), 1–18.

    Article  Google Scholar 

  63. Fissan, H., Ristig, S., Kaminski, H., Asbach, C., & Epple, M. (2014). Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Analytical Methods, 6(18), 7324–7334.

    Article  CAS  Google Scholar 

  64. Patra, N., Kar, D., Pal, A., & Behera, A. (2018). Antibacterial, anticancer, anti-diabetic and catalytic activity of bio-conjugated metal nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 1–6.

    Google Scholar 

  65. Rauwel, P., Kuunal, S., Ferdov, S., and Rauwel, E., (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering. 1-9.

  66. Dubey, S. P., Lahtinen, M., Sarkka, H., & Sillanpaa, M. (2010). Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids and Surfaces B: Biointerfaces, 80(1), 26–33.

    Article  CAS  PubMed  Google Scholar 

  67. Raghunandan, D., Ravishankar, B., Sharanbasava, G., Mahesh, D. B., Harsoor, V., Yalagatti, M. S., Bhagawanraju, M., & Venkataraman, A. (2011). Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnology, 2(1-6), 57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cho, K., Wang, X., Nie, S., Chen, Z. G., & Shin, D. M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 14(5), 1310–1316.

    Article  CAS  PubMed  Google Scholar 

  69. Suman, T. Y., Rajasree, S. R., Kanchana, A., & Elizabeth, S. B. (2013). Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids and Surfaces, B: Biointerfaces, 106, 74–78.

    Article  CAS  PubMed  Google Scholar 

  70. Sindhu, K., Indra, R., Rajaram, A., Sreeram, K. J., & Rajaram, R. (2011). Investigations on the interaction of gold-curcumin nanoparticles with human peripheral blood lymphocytes. Journal of Biomedical Nanotechnology, 7(1), 56.

    Article  CAS  PubMed  Google Scholar 

  71. Mukherjee, S., Chowdhury, D., Kotcherlakota, R., Patra, S., & kumar, B.V., Bhadra, M.P., Sreedhar, B., and Patra, C.R. (2014). Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics., 4(3), 316–335.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., Han, M. K., Xiao, B., Xu, C., Srinivasan, S., & Merlin, D. (2016). Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dipankar, C., & Murugan, S. (2012). The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces B: Biointerfaces, 98, 112–119.

    Article  CAS  PubMed  Google Scholar 

  74. Bhadra, K., & Kumar, G. S. (2010). Isoquinoline alkaloids and their binding with DNA: Calorimetry and thermal analysis applications. Mini Reviews in Medicinal Chemistry, 10(13), 1235–1247.

    Article  CAS  PubMed  Google Scholar 

  75. Anand, K., Tiloke, C., Phulukdaree, A., Ranjan, B., Chuturgoon, A., Singh, S., & Gengan, R. (2016). Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. Journal of Photochemistry and Photobiology. B, 165(34), 87–95.

    Article  CAS  Google Scholar 

  76. Xia, Q. H., Ma, Y. J., & Wang, J. W. (2016). Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials, 6(9), 160–100.

    Article  PubMed Central  Google Scholar 

  77. Rajendran, I., Dhandapani, H., Anantanarayanan, R., & Rajaram, R. (2015). Apigenin mediated gold nanoparticle synthesis and their anti-cancer effect on human epidermoid carcinoma (A431) cells. RSC Advances, 5(63), 51055–51066.

    Article  CAS  Google Scholar 

  78. Sahu, N., Soni, D., Chandrashekhar, B., Satpute, D. B., Saravanadevi, S., Sarangi, B. K., & Pandey, R. A. (2016). synthesis of silver nanoparticles using flavonoids: Hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. International Nano Letters, 6(3), 173–181.

    Article  Google Scholar 

  79. Sreekanth, T. V. M., Pandurangan, M., Kim, D. H., & Lee, Y. R. (2016). Green synthesis: In-vitro anticancer activity of silver nanoparticles on human cervical cancer cells. Journal of Cluster Science, 27(2), 671–681.

    Article  CAS  Google Scholar 

  80. Rosarin, F. S., Arulmozhi, V., Nagarajan, S., & Mirunalini, S. (2013). Anti-proliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pacific Journal of Tropical Medicine, 6(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  81. Sukumar, U. K., Bhushan, B., Dubey, P., Matai, I., Sachdev, A., & Packirisamy, G. (2013). Emerging applications of nanoparticles for lung cancer diagnosis and therapy. International Nano Letters, 3(1), 17.

    Article  Google Scholar 

  82. Thevenot, P., Cho, J., Wavhal, D., Timmons, R. B., & Tang, L. (2008). Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine and Nanotechnology, 4(3), 226–236.

    CAS  Google Scholar 

  83. Hou, Z., Zhang, Y., Deng, K., Chen, Y., Li, X., Deng, X., Cheng, Z., Lian, H., Li, C., & Jun Lin, J. (2015). UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondriain volved apoptosis pathway. ACS Nano, 9(3), 2584–2599.

    Article  CAS  PubMed  Google Scholar 

  84. Alshatwi, A. A., Athinarayanan, J., & Periasamy, V. S. (2015). Green synthesis of bimetallic Au-Pt nanostructures and their application for proliferation inhibition and apoptosis induction in human cervical cancer cell. Journal of Materials Science. Materials in Medicine, 26(3), 148.

    Article  PubMed  Google Scholar 

  85. Wahab, R., Dwivedi, S., Umar, A., Singh, S., Hwang, I. H., Shin, H. S., Musarrat, J., Al-Khedhairy, A. A., & Kim, Y. S. (2013). ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells. Journal of Biomedical Nanotechnology, 9(3), 441–449.

    Article  CAS  PubMed  Google Scholar 

  86. Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Bleve-Zacheo, T., D’Alessio, M., Zambonin, P. G., & Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17(21), 5255–5262.

    Article  CAS  Google Scholar 

  87. Soliman, W. E., Khan, S., Rizvi, S. M. D., Moin, A., Elsewedy, H. S., Abulila, A. S., & Shehata, T. M. (2020). Therapeutic applications of biostable silver nanoparticles synthesized using peel extract of Benincasa hispida: Antibacterial and anticancer activities. Nanomaterials, 10(10), 1954.

    Article  CAS  PubMed Central  Google Scholar 

  88. Ansar, S., Tabassum, H., Aladwan, N. S., Ali, M. N., Almaarik, B., AlMahrouqi, S., & Alsubki, R. (2020). Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Scientific Reports, 10(1), 1–12.

    Article  Google Scholar 

  89. Sarala, E., Madhukara Naik, M., Vinuth, M., Rami Reddy, Y. V., and Sujatha, H. R. (2020) Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) celllines. Journal of Materials Science: Materials in Electronics. 1-8.

  90. Munawer, U., Raghavendra, V. B., Ningaraju, S., Krishna, K. L., Ghosh, A. R., Melappa, G., & Pugazhendhi, A. (2020). Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies. International Journal of Pharmaceutics, 588, 119729.

    Article  CAS  PubMed  Google Scholar 

  91. Vijayakumar, T. S., Mahboob, S., Bupesh, G., Vasanth, S., Al-Ghanim, K. A., Al-Misned, F., & Govindarajan, M. (2020). Facile synthesis and biophysical characterization of egg albumen-wrapped zinc oxide nanoparticles: A potential drug delivery vehicles for anticancer therapy. Journal of Drug Delivery Science and Technology, 60, 102015.

    Article  CAS  Google Scholar 

  92. Elemike, E. E., Onwudiwe, D. C., & Singh, M. (2020). Eco-friendly synthesis of copper oxide, zinc oxide and copper oxide-zinc oxide nanocomposites, and their anticancer applications. Journal of Inorganic and Organometallic Polymers and Materials, 30(2), 400–409.

    Article  CAS  Google Scholar 

  93. Selim, Y. A., Azb, M. A., Ragab, I., & Abd El-Azim, M. H. (2020). Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Scientific Reports, 10(1), 1–9.

    Article  Google Scholar 

  94. Jayarambabu, N., Rao, T. V., Kumar, R. R., Akshaykranth, A., Shanker, K., & Suresh, V. (2020). Anti-hyperglycemic, pathogenic and anticancer activities of Bambusa arundinacea mediated zinc oxide nanoparticles. Materials Today Communications, 26, 101688.

    Article  Google Scholar 

  95. Mittal, A. K., Thanki, K., Jain, S., & Banerjee, U. C. (2016). Comparative studies of anticancer and antimicrobial potential of bioinspired silver and silver-selenium nanoparticles. Application of Nanomedicine, 1(1), 1–6.

    Google Scholar 

  96. Gurunathan, S., Jeyaraj, M., Kang, M.-H., & Kim, J.-H. (2019). The effects of apigenin-biosynthesized ultra-small platinum nanoparticles on the human monocytic THP-1 cell line. Cells, 8(5), 444.

    Article  CAS  PubMed Central  Google Scholar 

  97. Sekar, V., Rajendran, K., Vallinayagam, S., Deepak, V., & Mahadevan, S. (2018). Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and they're in silico modeling. Journal of Industrial and Engineering Chemistry, 62, 239–249.

    Article  CAS  Google Scholar 

  98. Cadete, A., Olivera, A., Besev, M., Dhal, P. K., Gonçalves, L., Almeida, A. J., Bastiat, G., Benoit, J.-P., de la Fuente, M., & Garcia-Fuentes, M. (2019). Self-assembled hyaluronan nanocapsules for the intracellular delivery of anticancer drugs. Scientific Reports, 9(1), 11565.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Muniyandi, J., Sangiliyandi, G., Muhammad, Q., Min-Hee, K., & Jin-Hoi, K. (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 9, 1–41.

    Google Scholar 

  100. Song, W., Su, X., Gregory, D. A., Li, W., Cai, Z., & Zhao, X. (2018). Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials, 8, 907.

    Article  PubMed Central  Google Scholar 

  101. Shargh, V. H., Hondermarck, H., & Liang, M. (2017). Gelatin-albumin hybrid nanoparticles as matrix metalloproteinases-degradable delivery systems for breast cancer therapy. Nanomedicine, 12(9), 977–989.

    Article  CAS  PubMed  Google Scholar 

  102. Sorasitthiyanukarn, F. N., Muangnoi, C., Ratnatilaka Na Bhuket, P., Rojsitthisak, P., & Rojsitthisak, P. (2018). Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Materials Science & Engineering. C, Materials for Biological Applications, 93, 178–190.

    Article  CAS  Google Scholar 

  103. Jithan, A., Madhavi, K., Madhavi, M., & Prabhakar, K. (2011). Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. International Journal of Pharmaceutical Investigation, 1, 119–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wua, F., Zhuc, J., Lid, G., Wange, J., Veeraraghavanf, V. P., Mohang, S. K., & Zhanga, Q. (2019). Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3297–3305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ms. Varsha Verma wrote and designs the manuscript. Dr. Piyush Kumar Thakur contributed to review this manuscript. The manuscript was edited and improved by both authors. We both read and approved the final manuscript.

Corresponding author

Correspondence to Piyush Kumar Thakur.

Ethics declarations

Ethics Approval

Not applicable since no clinical trials were conducted as part of this review manuscript.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P.K., Verma, V. A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles. Appl Biochem Biotechnol 193, 2357–2378 (2021). https://doi.org/10.1007/s12010-021-03598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03598-6

Keywords

Navigation