Skip to main content
Log in

Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy: A Molecular Dynamics Study

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Mechanical properties of high-entropy alloys (HEAs) with the face-centered cubic (fcc) structure strongly depend on their initial grain orientations. However, the orientation-dependent mechanical responses and the underlying plastic flow mechanisms of such alloys are not yet well understood. Here, deformation of the equiatomic FeMnCoCrNi HEA with various initial orientations under uniaxial tensile testing has been studied by using atomistic simulations, showing the results consistent with the recent experiments on fcc HEAs. The quantitative analysis of the activated deformation modes shows that the initiation of stacking faults is the main plastic deformation mechanism for the crystals initially oriented with [001], [111], and [112], and the total dislocation densities in these crystals are higher than that with the [110] and [123] orientations. Stacking faults, twinning, and hcp-martensitic transformation jointly promote the plastic deformation of the [110] orientation, and twinning in this crystal is more significant than that with other orientations. Deformation in the crystal oriented with [123] is dominated by the hcp-martensite transformation. Comparison of the mechanical behaviors in the FeMnCoCrNi alloy and the conventional materials, i.e. Cu and Fe50Ni50, has shown that dislocation slip tends to be activated more readily in the HEA. This is attributed to the larger lattice distortion in the HEA than the low-entropy materials, leading to the lower critical stress for dislocation nucleation and elastic–plastic transition in the former. In addition, the FeMnCoCrNi HEA with the larger lattice distortion leads to an enhanced capacity of storing dislocations. However, for the [001]-oriented HEA in which dislocation slip and stacking fault are the dominant deformation mechanisms, the limited deformation modes activated are insufficient to improve the work hardening ability of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004)

    Article  CAS  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  CAS  Google Scholar 

  3. H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Curr. Opin. Solid. State. Mater. Sci. 21, 252 (2017)

    Article  CAS  Google Scholar 

  4. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)

    Article  CAS  Google Scholar 

  5. Z. Pei, Mater. Sci. Eng. A 737, 132 (2018)

    Article  CAS  Google Scholar 

  6. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    Article  CAS  Google Scholar 

  7. S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature 544, 460 (2017)

    Article  CAS  Google Scholar 

  8. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)

    Article  CAS  Google Scholar 

  9. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563, 546 (2018)

    Article  CAS  Google Scholar 

  10. Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574, 223 (2019)

    Article  CAS  Google Scholar 

  11. R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581, 283 (2020)

    Article  CAS  Google Scholar 

  12. J.W. Yeh, J. Occup. Med. 65, 1759 (2013)

    CAS  Google Scholar 

  13. W.R. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2 (2018)

    Article  CAS  Google Scholar 

  14. F. Tian, L.K. Varga, L. Vitos, Intermetallics 83, 9 (2017)

    Article  CAS  Google Scholar 

  15. H. Ge, F. Tian, JOM 71, 4225 (2019)

    Article  Google Scholar 

  16. S.S. Sohn, A.K. Silva, Y. Ikeda, F. Kormann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31, 1807142 (2019)

    Article  CAS  Google Scholar 

  17. B. Yin, S. Yoshida, N. Tsuji, W.A. Curtin, Nat. Commun. 11, 2507 (2020)

    Article  CAS  Google Scholar 

  18. F.H. Cao, Y.J. Wang, L.H. Dai, Acta Mater 194, 283 (2020)

    Article  CAS  Google Scholar 

  19. H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Mater. Des. 197, 109202 (2021)

    Article  CAS  Google Scholar 

  20. P. Sathiyamoorthi, J. Moon, J.W. Bae, P. Asghari-Rad, H.S. Kim, Scr. Mater. 163, 152 (2019)

    Article  CAS  Google Scholar 

  21. W. Fang, H. Yu, R. Chang, X. Zhang, P. Ji, B. Liu, J. Li, X. Qu, Y. Liu, F. Yin, Mater. Chem. Phys. 238, 121897 (2019)

    Article  CAS  Google Scholar 

  22. Z. Li, D. Raabe, Mater. Chem. Phys. 210, 29 (2018)

    Article  CAS  Google Scholar 

  23. Y. Bu, Z. Li, J. Liu, H. Wang, D. Raabe, W. Yang, Phys. Rev. Lett. 122, 075502 (2019)

    Article  CAS  Google Scholar 

  24. M. Černý, J. Pokluda, Phys. Rev. B 82, 174106 (2010)

    Article  CAS  Google Scholar 

  25. W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Adv. Mater. 30, 1804727 (2018)

    Article  CAS  Google Scholar 

  26. L. Li, Z. Li, A.K. Silva, Z. Peng, H. Zhao, B. Gault, D. Raabe, Acta Mater. 178, 1 (2019)

    Article  CAS  Google Scholar 

  27. W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.J. Lee, N.P.J. Comput, Mater. 4, 1 (2018)

    CAS  Google Scholar 

  28. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Acta Mater. 100, 90 (2015)

    Article  CAS  Google Scholar 

  29. H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia, J. Mater. Sci. Technol. 48, 146 (2020)

    Article  Google Scholar 

  30. D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Scr. Mater. 165, 39 (2019)

    Article  CAS  Google Scholar 

  31. S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108, 44 (2015)

    Article  CAS  Google Scholar 

  32. S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmstrom, S.K. Kwon, L. Vitos, Nat. Commun. 9, 2381 (2018)

    Article  CAS  Google Scholar 

  33. A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65, 1780 (2013)

    Article  CAS  Google Scholar 

  34. W. Abuzaid, H. Sehitoglu, Mater. Charact. 129, 288 (2017)

    Article  CAS  Google Scholar 

  35. L. Patriarca, A. Ojha, H. Sehitoglu, Y.I. Chumlyakov, Scr. Mater. 112, 54 (2016)

    Article  CAS  Google Scholar 

  36. B. Uzer, S. Picak, J. Liu, T. Jozaghi, D. Canadinc, I. Karaman, Y.I. Chumlyakov, I. Kireeva, Mater. Res. Lett. 6, 442 (2018)

    Article  CAS  Google Scholar 

  37. S. Picak, J. Liu, C. Hayrettin, W. Nasim, D. Canadinc, K. Xie, Y.I. Chumlyakov, I.V. Kireeva, I. Karaman, Acta Mater. 181, 555 (2019)

    Article  CAS  Google Scholar 

  38. Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10, 3563 (2019)

    Article  CAS  Google Scholar 

  39. J. Li, Q. Fang, B. Liu, Y. Liu, Acta Mater. 147, 35 (2018)

    Article  CAS  Google Scholar 

  40. G. Cheng, S. Yin, T.-H. Chang, G. Richter, H. Gao, Y. Zhu, Phys. Rev. Lett. 119, 256101 (2017)

    Article  Google Scholar 

  41. Q. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, P.K. Liaw, Int. J. Plast. 114, 161 (2019)

    Article  CAS  Google Scholar 

  42. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  CAS  Google Scholar 

  43. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  44. H. Tsuzuki, P.S. Branicio, J.P. Rino, Comput. Phys. Comm. 177, 518 (2007)

    Article  CAS  Google Scholar 

  45. A. Stukowski, K. Albe, Modell. Simul. Mater. Sci. Eng. 18, 085001 (2010)

    Article  CAS  Google Scholar 

  46. G.D. Sathiaraj, C.W. Tsai, J.W. Yeh, M. Jahazi, P.P. Bhattacharjee, J. Alloy. Compd. 688, 752 (2016)

    Article  CAS  Google Scholar 

  47. M.F. Campos, S.A. Loureiro, D. Rodrigues, M.C.A. da Silva, N.B. de Lima, MSF 591–593, 3 (2008)

    Article  Google Scholar 

  48. W. Li, S. Lu, Q.M. Hu, S.K. Kwon, B. Johansson, L. Votos, J. Phys.: Condens. Matter. 26, 265005 (2014)

    Google Scholar 

  49. A. Refaat Ali, S.A. Mahmoud, Z.M. Farid, K. Atef, Phys. Stat. Sol. A 165, 377 (1998)

    Article  CAS  Google Scholar 

  50. X.B. Li, G.M. Jiang, J.P. Di, Y. Yang, C.L. Wang, Mater. Sci. Eng. A 772, 138811 (2020)

    Article  CAS  Google Scholar 

  51. Y.M. Kim, B.J. Lee, Mater. Sci. Eng. A 733, 449 (2007)

    Google Scholar 

  52. Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, C.T. Liu, Scr. Mater. 130, 96 (2017)

    Article  CAS  Google Scholar 

  53. H. Zhang, X. Sun, S. Lu, Z. Dong, X. Ding, Y. Wang, L. Vitos, Acta Mater. 155, 12 (2018)

    Article  CAS  Google Scholar 

  54. M.A. Tschopp, D.L. McDowell, J. Mech. Phys. Solids 56, 1806 (2008)

    Article  CAS  Google Scholar 

  55. I. Salehinia, D.F. Bahr, Int. J. Plast. 52, 133 (2014)

    Article  CAS  Google Scholar 

  56. Z.J. Wang, Q.J. Li, Y. Li, L.C. Huang, L. Lu, M. Dao, J. Li, S. Suresh, Z.W. Shan, Nat. Commun. 8, 1108 (2017)

    Article  CAS  Google Scholar 

  57. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008)

    Article  CAS  Google Scholar 

  58. Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57, 1 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51922026), the Fundamental Research Funds for the Central Universities (Nos. N2002005 and N2007011), the Liaoning Natural Science Foundation (No. 20180510010), and the 111 Project (No. B20029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Le Yan or Nan Jia.

Additional information

Available online at http://link.springer.com/journal/40195.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HF., Yan, HL., Fang, F. et al. Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy: A Molecular Dynamics Study. Acta Metall. Sin. (Engl. Lett.) 34, 1511–1526 (2021). https://doi.org/10.1007/s40195-021-01260-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01260-y

Keywords

Navigation