Skip to main content
Log in

Funicularity of conics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Funicular structures can resist a given load with pure axial forces and therefore tend to use material very efficiently. One main challenge in their design is form finding, which often requires advanced numerical methods. In this article, we show analytically that a very common family of curves, conics, is funicular for a particular load case: a uniform radial load emanating from a focus. The result is a generalization of the well-known funicularity of parabolas and arcs of circles, respectively, under uniform vertical load and constant normal pressure. It can be used to design self-stressed structures by hand without the need for calculations. Portions of conics can be combined to obtain original shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lee, J., Fivet, C., Mueller, C.: Grammar-based generation of equilibrium structures through graphic statics. In: Proceedings of the International Association for Shell and Spatial Structures Symposium (IASS) (2015)

  2. Ohlbrock, P.O., Schwartz, J.: Combinatorial equilibrium modeling. Int. J. Space Struct. 31(2–4), 177–189 (2016)

    Article  Google Scholar 

  3. Block, P.: Thrust network analysis. exploring three-dimensional equilibrium. Doctoral dissertation, MIT, Cambridge, USA (2009)

  4. Liu, Y., Snyder, J., Wang, W.: Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. 32(4), 1–10 (2013)

    Article  Google Scholar 

  5. Tellier, X., Douthe, C., Hauswirth, L., Baverel, O.: Linear-Weingarten membranes with funicular boundaries. Struct. Concr. 2020, 1–14 (2020)

    Google Scholar 

  6. Tellier, X., Hauswirth, L., Douthe, C., Baverel, O.: Discrete CMC surfaces for doubly-curved building envelopes. In: Advances in Architectural Geometry, pp. 166–193 (2018)

  7. Vouga, E., Mathias, H., Wallner, J., Pottmann, H.: Design of self-supporting surfaces. ACM Trans. Graph. 31(4), 1–11 (2012)

    Article  Google Scholar 

  8. Heyman, J.: The Stone Skeleton: Structural Engineering of Masonry Architecture. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  9. Cremona, L.: Graphical Statics: Two Treatises on the Graphical Calculus and Reciprocal Figures in Graphical Statics. Claredon Press, London (1890)

    MATH  Google Scholar 

  10. Dennis, N.: On the formation of funicular curves. Int. J. Mech. Sci. 36(3), 183–188 (1994)

    Article  Google Scholar 

  11. Fung, T.C.: Shapes of submerged funicular arches. J. Eng. Mech. 129(1), 120–125 (2003)

    Article  Google Scholar 

  12. Gavin, H.P., Reilly, K.J.: Submerged funicular arches. J. Struct. Eng. 126(May), 627–629 (2000)

    Article  Google Scholar 

  13. Wang, C.M., Wang, C.Y.: Funicular shapes for submerged arches. J. Struct. Eng. 128(2), 266–270 (2002)

    Article  Google Scholar 

  14. Wang, C.Y., Wang, C.M.: Closed-form solutions for funicular cables and arches. Acta Mech. 2226, 1641–1645 (2015)

    Article  MathSciNet  Google Scholar 

  15. Simpson, A., Tabarrok, B.: Chain subjected to uniform fluid flow in a horizontal plane. Int. J. Mech. Sci. 18, 91–94 (1976)

    Article  Google Scholar 

  16. Hill, R.D., Rozvany, G.I.N., Ming, W.C., Hwa, L.K.: Optimization, spanning capacity, and cost sensitivity of fully stressed arches. J. Struct. Mech. 7(4), 375–410 (1979)

    Article  Google Scholar 

  17. Todisco, L., Corres, H.: New opportunities for the conceptual design of material-efficient antifunicular structures. Hormigón Acero 69(284), 83–88 (2018)

    Article  Google Scholar 

  18. Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3(1), 115–134 (1974)

    Article  MathSciNet  Google Scholar 

  19. Otter, J., Cassel, A., Hobbs, R.: Dynamic relaxation. In: Proceedings of the Institution of Civil Engineers, pp. 633–656 (1966)

  20. Schober, H.: Transparent Shells: Form, Topology, Structure. Ernst & Sohn, London (2015)

    Book  Google Scholar 

  21. Tamai, H.: Geometric approach to form finding of a spoke wheel system: mathematical explanations. In: Proceedings of the IASS Annual Symposium, pp. 692–699 (2019)

  22. Alexakis, H., Makris, N.: Minimum thickness of elliptical masonry arches. Acta Mech. 224, 2977–2991 (2013)

    Article  MathSciNet  Google Scholar 

  23. Rankine, W.J.M.: A Manual of Applied Mechanics . Marion R Griffin & Co., London (1858)

    MATH  Google Scholar 

  24. Fivet, C.: Projective transformations of structural equilibrium. Int. J. Space Struct. 31(2–4), 135–146 (2016)

    Article  Google Scholar 

  25. Glaeser, G., Stachel, H., Odehnal, B.: The Universe of Conics. Springer, Berlin (2016)

    Book  Google Scholar 

  26. Tsukerman, E.: Discrete conics as distinguished projective images of regular polygons. Discrete Comput. Geom. 53(4), 691–702 (2015). https://doi.org/10.1007/s00454-015-9669-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Konstantatou, M., D’Acunto, P., McRobie, A.: Polarities in structural analysis and design: n-dimensional graphic statics and structural transformations. Int. J. Solids Struct. 152–153(July), 272–293 (2018). https://doi.org/10.1016/j.ijsolstr.2018.07.003

    Article  Google Scholar 

  28. Micheletti, A.: On generalized reciprocal diagrams for self-stressed frameworks. Int. J. Space Struct. 23(3), 153–166 (2008)

    Article  Google Scholar 

  29. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Books Company, New York (1961)

    Google Scholar 

Download references

Funding

This work was supported by Labex MMCD (http://mmcd.univ-parisest.fr/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Tellier.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tellier, X., Douthe, C., Hauswirth, L. et al. Funicularity of conics. Acta Mech 232, 3179–3191 (2021). https://doi.org/10.1007/s00707-021-02987-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02987-6

Navigation