Skip to main content

Advertisement

Log in

Large-scale hydraulic conductivity distribution in an unconfined carbonate aquifer using the ocean tidal propagation

Distribution à grande échelle de la conductivité hydraulique d’un aquifère libre carbonaté à partir de la propagation de la marée océanique

Distribución de la conductividad hidráulica a gran escala en un acuífero de carbonatos no confinado mediante la propagación de la marea oceánica

利用海洋潮能传播的承压碳酸盐含水层的大尺度渗透系数分布

Distribuição de condutividade hidráulica em grande escala em um aquífero carbonático não confinado usando a propagação das marés oceânicas

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The hydraulic conductivity of an unconfined carbonate aquifer at the uplifted atoll of Minami-Daito, Japan, was evaluated by a combination of cross-spectral analysis, analytical solution, and density-dependent groundwater modeling based on observed groundwater levels in 15 wells and at sea level. The island area was divided into 10 subregions based on island morphology and on inland propagation of ocean tides. The hydraulic conductivity was obtained for each subregion using analytical solutions based on phase lags of M2 constituents of ocean tides at each well by assuming two aquifer thicknesses (300 and 1,800 m) and two effective porosities (0.1 and 0.3). The density-dependent groundwater model evaluated the hydraulic conductivity of the subregions by reproducing observed groundwater levels. The hydraulic conductivity in the subregions was estimated as 3.46 × 10−3 to 6.35 × 10−2 m/s for aquifer thickness of 300 m and effective porosity of 0.1, and as 1.73 × 10−3 to 3.17 × 10−2 m/s for aquifer thickness of 1,800 m and the effective porosity of 0.3. It was higher in southern and northern areas, and higher in interior lowland than in the western and eastern areas. Fissures and dolomite distributions on the island control differences of the omnidirectional ocean tidal propagation and cause these differences in hydraulic conductivity. The method used for this study may also be applicable to other small islands that have few or no data for hydraulic conductivity.

Résumé

La conductivité hydraulique d’un aquifère libre carbonaté de l’atoll surélevé de Minami-Daito, Japon, a été évaluée à l’aide d’une combinaison d’analyse cross spectrale, de solutions analytiques, et de modélisation des eaux souterraines avec prise en compte de l’effet de la densité basée sur les niveaux piézométriques observés dans 15 puits et le niveau de la mer. La surface de l’île a été divisée en 10 sous-régions à partir de sa morphologie et de la propagation des marées océaniques à l’intérieur des terres. La conductivité hydraulique a été obtenue pour chaque sous-région à l’aide de solutions analytiques basées sur les décalages de phase des constituants M2 des marées océaniques à chaque puits en supposant deux épaisseurs d’aquifère (300 et 1,800 m) et deux valeurs de porosité effective (0.1 et 0.3). Le modèle d’écoulement des eaux souterraines avec prise en compte de l’effet de densité a permis d’évaluer la conductivité hydraulique des sous-régions en reproduisant les niveaux piézométriques observés. Les valeurs de la conductivité hydraulique dans les sous-régions estimées sont comprises entre 3.46 × 10−3 et 6.35 × 10−2 m/s pour une épaisseur d’aquifère de 300 m et une porosité efficace de 0.1, et entre 1.73 × 10−3 et 3.17 × 10−2 m/s pour une épaisseur d’aquifère de 1,800 m et une porosité efficace de 0.3. Les valeurs de conductivité sont plus élevées dans les régions méridionales et septentrionales, et aussi plus élevées dans les plaines intérieures que dans les régions occidentales et orientales. Les distributions des fissures et de la dolomie sur les îles contrôlent les différences dans la propagation de la marée océanique indépendamment de la direction et sont la cause de ces différences de valeurs de conductivité hydraulique. La méthode utilisée pour cette étude peut aussi être appliquée à d’autres petites îles pour lesquelles on ne dispose que de peu ou pas de données de conductivité hydraulique.

Resumen

Se evaluó la conductividad hidráulica de un acuífero carbonatado no confinado en el atolón elevado de Minami-Daito, Japón, mediante una combinación de análisis espectral cruzado, solución analítica y modelización de aguas subterráneas en función de la densidad, basándose en los niveles de agua subterránea observados en 15 pozos y el nivel del mar. La zona de la isla se dividió en 10 subregiones basadas en la morfología de la isla y en la propagación hacia el interior de las mareas oceánicas. La conductividad hidráulica se obtuvo para cada subregión utilizando soluciones analíticas basadas en los desfases de los constituyentes M2 de las mareas oceánicas en cada pozo asumiendo dos espesores de acuífero (300 y 1,800 m) y dos porosidades efectivas (0.1 y 0.3). El modelo de agua subterránea dependiente de la densidad evaluó la conductividad hidráulica de las subregiones reproduciendo los niveles de agua subterránea observados. La conductividad hidráulica en las subregiones se estimó entre 3.46 × 10−3 y 6.35 × 10−2 m/s para un espesor del acuífero de 300 m y una porosidad efectiva de 0.1, y entre 1.73 × 10−3 y 3.17 × 10−2 m/s para un espesor del acuífero de 1,800 m y una porosidad efectiva de 0.3. Fue mayor en las zonas del sur y del norte, y mayor en las zonas bajas del interior que en las zonas del oeste y del este. Las fisuras y la distribución de la dolomita en la isla controlan las diferencias de la propagación omnidireccional de la marea oceánica y causan estas diferencias en la conductividad hidráulica. El método utilizado para este estudio también puede ser aplicable a otras islas pequeñas que tienen pocos o ningún dato de conductividad hidráulica.

摘要

通过结合交叉光谱分析, 解析解和变密度地下水模型, 并基于15眼井和海上观测到的地下水位, 对日本Minami-Daito隆起环礁中承压碳酸盐含水层的渗透系数进行了评估。根据岛屿的形状和海洋潮能向内陆的传播, 将岛屿区域划分为10个子区域。假设两个含水层厚度(300和1,800 m)和两个有效孔隙率(0.1和0.3), 采用解析解基于每眼井海潮M2成分的相位滞后, 获得每个分区的渗透系数。变密度地下水模型通过模拟观测到的地下水位来评估分区的渗透系数。对于300 m的含水层厚度和0.1的有效孔隙率, 该子区域的渗透系数约为3.46 × 10−3至6.35 × 10−2 m/s; 而含水层厚度为1,800 m和的有效孔隙率为0.3的区域, 渗透系数约为1.73 × 10−3至3.17 × 10−2 m/s。与西部和东部区域相比, 南部和北部地区的渗透系数大, 而且内陆低地区渗透系数大。岛上裂缝和白云岩分布控制了全方位海洋潮能传播的差异, 并产生了渗透系数的差异。研究方法也适用于其他很少或没有渗透系数数据的小岛。

Resumo

A condutividade hidráulica de um aquífero carbonático não confinado no atol elevado de Minami-Daito, Japão, foi avaliada por uma combinação de análise espectral cruzada, solução analítica e modelagem de águas subterrâneas dependentes da densidade com base em níveis observados de águas subterrâneas em 15 poços e no mar nível. A área da ilha foi dividida em 10 subregiões com base na morfologia da ilha e na propagação das marés oceânicas para o interior. A condutividade hidráulica foi obtida para cada subregião usando soluções analíticas baseadas em defasagens de fase de M2 ​​constituintes das marés do oceano em cada poço, assumindo duas espessuras de aquífero (300 e 1,800 m) e duas porosidades efetivas (0.1 e 0.3). O modelo de água subterrânea dependente da densidade avaliou a condutividade hidráulica das subregiões reproduzindo os níveis de água subterrânea observados. A condutividade hidráulica nas subregiões foi estimada como 3.46 × 10−3 a 6.35 × 10−2 m/s para a espessura do aquífero de 300 me porosidade efetiva de 0.1, e como 1.73 × 10−3 a 3.17 × 10−2 m/s para a espessura do aquífero de 1,800 m e a porosidade efetiva de 0.3. Ela foi mais alta nas áreas do sul e norte, e mais alta nas planícies do interior do que nas áreas oeste e leste. Fissuras e distribuições de dolomita na ilha controlam as diferenças na propagação das marés oceânicas omnidirecionais e causam essas diferenças na condutividade hidráulica. O método usado para este estudo também pode ser aplicável a outras pequenas ilhas que têm poucos ou nenhum dado de condutividade hidráulica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson M, Aiken J, Webb E, Mickelson D (1999) Sedimentology and hydrogeology of two braided stream deposits. Sediment Geol 129:187–199. https://doi.org/10.1016/S0037-0738(99)00015-9

    Article  Google Scholar 

  • Arai T (1979) On the morphological features of lake basins in the Daito Islands, Japan (in Japanese with English Abstract). Jpn J Limnol 40(4):201–206

  • Bailey RT, Jenson JW, Olsen AE (2009) Numerical modeling of atoll island hydrogeology. Ground Water 47:184–196. https://doi.org/10.1111/j.1745-6584.2008.00520.x

    Article  Google Scholar 

  • Cherubini C, Giasi C, Pastore N (2013) Fluid flow modeling of a coastal fractured karstic aquifer by means of a lumped parameter approach. Environ Earth Sci 70:2055–2060. https://doi.org/10.1007/s12665-010-0851-5

    Article  Google Scholar 

  • Dong L, Shimada J, Kagabu M, Yang H (2015) Barometric and tidal-induced aquifer water level fluctuation near the Ariake Sea. Environ Monit Assess 187:4187. https://doi.org/10.1007/s10661-014-4187-6

    Article  Google Scholar 

  • Ferris JG (1952) Cyclic fluctuations of water levels as a basis for determining aquifers transmissibility. US Geological Survey, Water Resources Division, Washington, DC, pp 1–16. https://doi.org/10.3133/70133368

  • Holding S, Allen DM, Foster S, Hsieh A, Larocque I, Klassen J, Van Pelt SC (2016) Groundwater vulnerability on small islands. Nat Clim Chang 6:1100–1103

    Article  Google Scholar 

  • Huizer S, Karaoulis MC, Oude Essink GHP, Bierkens MFP (2017) Monitoring and simulation of salinity changes in response to tide and storm surges in a sandy coastal aquifer system. Water Resour Res 53:6487–6509. https://doi.org/10.1002/2016WR020339

    Article  Google Scholar 

  • International Panel on Climate Change (IPCC) (2013) Climate Change 2013: The Physical Science Basis. Working Group 1 Contribution to the Fifth Assessment Report of the International Panel on Climate Change. IPCC, Geneva

  • Jacobson G, Hill PJ, Ghassemi F (2004) Chapter 24: geology and hydrogeology of Nauru Island. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of Carbonate Islands. Elsevier, Amsterdam, pp 707–742

  • Japan Meteorological Agency (2020) Homepage. https://www.jma.go.jp/jma. Accessed December 2020

  • JCG (2020) Japan Coast Guard, Marine Information Department website. https://www1.kaiho.mlit.go.jp/jhd.html. Accessed December 2020

  • Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Werner AD, Simmons CT (2014) Sea-level rise impact on fresh groundwater lenses in two-layer small islands. Hydrol Process 28:5938–5953. https://doi.org/10.1002/hyp.10059/hyp.0187

    Article  Google Scholar 

  • Lam RK (1974) Atoll permeability calculated from tidal diffusion. J Geophys Res 79(21):3073–3081. https://doi.org/10.1029/JC079i021p03073

    Article  Google Scholar 

  • Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205(3–4):217–231. https://doi.org/10.1016/S0022-1694(97)00155-8

    Article  Google Scholar 

  • Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658. https://doi.org/10.1029/WR018i003p00645

    Article  Google Scholar 

  • Mahmud K, Mariethoz G, Baker A, Sharma A (2015) Integrating multiple scales of hydraulic conductivity measurements in training image-based stochastic models. Water Resour Res 51:465–480. https://doi.org/10.1002/2014WR016150

    Article  Google Scholar 

  • Merritt ML (2004) Estimating hydraulic properties of the Floridan aquifer system by analysis of earth-tide, ocean-tide, and barometric effects, collier and Hendry counties, Florida. US Geol Surv Water Resour 03-4267

  • Mori K, Tada K, Tawara Y, Ohno K, Asami M, Kosaka K, Tosaka H (2015) Integrated watershed modeling for simulation of spatiotemporal redistribution of post- fallout radionuclides: application in radiocesium fate and transport processes derived from the Fukushima accidents. Environ Model Softw 72:126–146

    Article  Google Scholar 

  • Ohde S, Elderfield H (1992) Strontium isotope stratigraphy of Kita-Daito-jima atoll, north Philippine Sea: implications for Neogene sea-level change and tectonic history. Earth Planet Sci Lett 113:473–486. https://doi.org/10.1016/0012-821X(92)90125-F

    Article  Google Scholar 

  • Okumura A, Yang H, Kudo K, Kagabu M, Shimada J, Matsuda H (2016) Evaluation of the volume of freshwater lens and the groundwater regime in the uplifted coral atoll island, Minami-Daito Island, Japan (in Japanese). The Earth Monthly 38(1):10–17

    Google Scholar 

  • Perriquet M, Leonardi V, Henry T, Jourde H (2014) Saltwater wedge variation in a non-anthropogenic coastal karst aquifer influenced by a strong tidal range (Burren, Ireland). J Hydrol 519B:2350–2365. https://doi.org/10.1016/j.jhydrol.2014.10.006

    Article  Google Scholar 

  • Rotzoll K, Fletcher C (2013) Assessment of groundwater inundation as a consequence of sea-level rise. Nature Clim Change 3:477–481. https://doi.org/10.1038/nclimate1725

    Article  Google Scholar 

  • Rotzoll K, El-Kadi AI, Gingerich SB (2008) Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation. Ground Water 46(2):239–250. https://doi.org/10.1111/j.1745-6584.2007.00412.x

    Article  Google Scholar 

  • Shih D, Lin G, Jia Y, Chen Y, Wu Y (2008) Spectral decomposition of periodic ground water fluctuation in a coastal aquifer. Hydrol Process 22:1755–1765. https://doi.org/10.1002/hyp.6781

    Article  Google Scholar 

  • Shimazu T, Yagi M, Asahara Y, Shimada J, Matsuda H (2015) Coral reef development of Minami-Daito Island, Japan (in Japanese). The Earth Monthly 37(12):514–520

    Google Scholar 

  • Shirahata K, Yoshimoto S, Tsuchihara T, Ishida S (2019) Study on aquifer hydraulic properties using tidal response method for future groundwater development. Paddy Water Environ 17(3):531–537

    Article  Google Scholar 

  • Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swain ED (2008) Documentation of a conduit flow process (CFP) for MODFLOW-2005. US Geol Surv Techniques and Methods 6-A24, 50 pp

  • Sugiyama T (1934) On the drilling in Kita-Daito Island (in Japanese). Contr Inst Geol Paleontol Tohoku Imp Univ 11:1–44

    Google Scholar 

  • Sutton JE, Screaton EJ, Martin JB (2015) Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling. Hydrogeol J 23:305–317 https://doi.org/10.1007/s10040-014-1213-2

    Article  Google Scholar 

  • Takenaga K (1965) Lakes and groundwater on Minami-Daito Island, Okinawa (in Japanese). Japanese Soc Geograph Sci 4:6–11

    Google Scholar 

  • Tosaka H, Itoh K, Furuno T (2000) Fully coupled formulation of surface flow with 2-phase subsurface flow for hydrological simulation. Hydrol Process 14:449–464. https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<449::AID-HYP948>3.0.CO;2-9

    Article  Google Scholar 

  • Trefry MG (1999) Periodic forcing in composite aquifers. Adv Water Resour 22:645–656. https://doi.org/10.1016/S0309-1708(98)00037-2

    Article  Google Scholar 

  • Underwood MR, Peterson FL, Voss CI (1992) Groundwater lens dynamics of atoll islands. Water Resour Res 28(11):2889–2902. https://doi.org/10.1029/92WR01723

    Article  Google Scholar 

  • Vacher HL (1988) Dupuit-Ghyben-Herzberg analysis of strip-island lenses. Geol Soc Am Bull 100:223–232

    Article  Google Scholar 

  • White I, Falkland T (2010) Management of freshwater lenses on small Pacific islands. Hydrogeol J 18(1):227–246. https://doi.org/10.1007/s10040-009-0525-0

    Article  Google Scholar 

  • Yamamoto S (1983) Shinban chikasui chousaho [Methods for groundwater investigation]. Kokon Shoin, Tokyo, 490 pp

  • Yang H, Shimada J, Matsuda H, Kagabu M, Dong L (2015) Evaluation of a freshwater lens configuration using a time series analysis of a groundwater level and an electric conductivity in Minami-Daito Island, Okinawa prefecture, Japan (in Japanese with English abstract). J Groundw Hydrol 57(2):187–205. https://doi.org/10.5917/jagh.57.187

    Article  Google Scholar 

  • Yang H, Kagabu M, Okumura A, Shimada J, Shibata T, Pinti LD (2020a) Hydrogeochemical processes and long-term effects of sea-level rise in an uplifted atoll island of Minami-Daito, Japan. J Hydrol: Regional Studies 31. https://doi.org/10.1016/j.ejrh.2020.100716

  • Yang H, Shimada J, Shibata T, Okumura A, Pinti LD (2020b) Freshwater lens oscillation induced by sea tides and variable rainfall at the uplifted atoll island of Minami-Daito, Japan. Hydrogeol J 28:2105–2114. https://doi.org/10.1007/s10040-020-02185-z

    Article  Google Scholar 

  • Yoshimoto S, Tsuchihara T, Shirahata K, Nakazato H, Ishida S (2019) A review of recent studies on groundwater modeling methods for heterogeneous carbonate aquifers. Bull National Agric Food Res Org, Rural Eng 3:13–28. https://doi.org/10.24514/00001148

Download references

Acknowledgements

Special appreciation is extended to the members of the Hydrology Laboratory in Kumamoto University and Geosphere Environmental Technology Corp. for their constructive comments.

Funding

This study was supported financially by CREST in the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heejun Yang.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Tawara, Y., Shimada, J. et al. Large-scale hydraulic conductivity distribution in an unconfined carbonate aquifer using the ocean tidal propagation. Hydrogeol J 29, 2091–2105 (2021). https://doi.org/10.1007/s10040-021-02366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02366-4

Keywords

Navigation