Skip to main content
Log in

Preparation of SERS Substrate with Ag Nanoparticles Covered on Pyramidal Si Structure for Abamectin Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, a surface-enhanced Raman scattering (SERS) substrate based on uniform silver nanoparticles/pyramidal silicon arrays (Ag NPs/PSi) is prepared by combining of wet etching processes and magnetron sputtering method. The average size of the Ag NPs is about 30–50 nm and uniform distribution on the surface of the PSi which are beneficial to the sensitivity and stability of the SERS signal. For R6G probe, a significant enhancement has been obtained even for the lowest concentration of 10−10 M. For abamectin detection, the Ag NPs/PSi substrate has exhibited sensitivity as low concentration as 1 ppm. The vibration peaks of abamectin molecules are firstly identified and investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fan M, Andrade GFS, Brolo AG (2020) A review on recent advances in the applications of surface-enhanced raman scattering in analytical chemistry. Anal Chim Acta 1097:1–29. https://doi.org/10.1016/j.aca.2019.11.049

    Article  CAS  PubMed  Google Scholar 

  2. Amane S, Yusong W, Luis ML-M (2014) Recent approaches toward creation of hot spots for SERS detection. J Photochem Photobiol C 21:2–25. https://doi.org/10.1016/j.jphotochemrev.2014.09.001

    Article  CAS  Google Scholar 

  3. Qing T, Weijia W, Yining F et al (2018) Recent progressive preparations and applications of the SERS substrates based on silver. Trac-Trend Anal Chem 106:246–258. https://doi.org/10.1016/j.trac.2018.06.018

    Article  CAS  Google Scholar 

  4. Abhijit R, Arpan M, Tapas KC et al (2017) Annealing induced morphology of silver nanoparticles on pyramidal silicon surface and their application to surface-enhanced raman scattering. ACS Appl Mater Interfaces 39:34405–34415. https://doi.org/10.1021/acsami.7b08493

    Article  CAS  Google Scholar 

  5. Tao Q, Li S, Zhang QY et al (2014) Controlled growth of ZnO nanorods on textured silicon wafer and the application for highly effective and recyclable SERS substrate by decorating Ag nanoparticles. Mater Res Bull 54:6–12. https://doi.org/10.1016/j.materresbull.2014.02.027

    Article  CAS  Google Scholar 

  6. Jianjun CS, Huilan X, You JG et al (2014) 3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation. Mater Res Bull 49:560–565. https://doi.org/10.1016/j.materresbull.2013.09.040

    Article  CAS  Google Scholar 

  7. Jia G, Shicai X, Xiaoyun L et al (2017) Graphene oxide-Ag nanoparticles-pyramidal silicon hybird system for homogeneous, long-term stable and sensitive SERS activity. Appl Surf Sci 396:1130–1137. https://doi.org/10.1016/j.apsusc.2016.11.098

    Article  CAS  Google Scholar 

  8. Chao Z, Shou ZJ, Cheng Y et al (2016) Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS. Sci Rep 6:25243. https://doi.org/10.1038/srep25243

    Article  CAS  Google Scholar 

  9. Shouzhen J, Jia G, Chao Z et al (2017) A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS2@Ag nanoparticles@pyramidal silicon. RSC Adv 7:5764–5773. https://doi.org/10.1039/C6RA26879J

    Article  Google Scholar 

  10. Yujin W, Yang Y, Yu S et al (2017) Rapidly fabricating large-scale plasmonic silver nanosphere arrays with sub-20 nm gap on Si pyramids by inverted annealing for highly sensitive SERS detection. RSC Adv 7:11578–11584. https://doi.org/10.1039/C6RA28517A

    Article  Google Scholar 

  11. Yiming B, Lingling Y, Jun W et al (2017) Highly reproducible and uniform SERS substrates based on Ag nanoparticles with optimized size and gap. Photonics Nanostruct 23:58–63. https://doi.org/10.1016/j.photonics.2016.12.002

    Article  Google Scholar 

  12. Tung-Hao C, Yu-Cheng C, Chien-Ming C et al (2019) Optimizing pyramidal silicon substrates through the electroless deposition of Ag nanoparticles for high-performance surface-enhanced Raman scattering. Thin Solid Films 676:108–112. https://doi.org/10.1016/j.tsf.2019.02.044

    Article  CAS  Google Scholar 

  13. Zhang C, Man BY, Jiang SZ et al (2015) SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure. Appl Surf Sci 347:668–672. https://doi.org/10.1016/j.apsusc.2015.04.170

    Article  CAS  Google Scholar 

  14. Kolberg DIS, Presta MA, Wickert C et al (2009) Rapid and accurate simultaneous determination of abamectin and ivermectin in bovine milk by high performance liquid chromatography with fluorescence detection. J Braz Chem Soc 20:1220–1226. https://doi.org/10.1590/S0103-50532009000700004

    Article  CAS  Google Scholar 

  15. Valenzuela AI, Redondo MJ, Pico Y et al (2000) Determination of abamectin in citrus fruits by liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A 871:57–65. https://doi.org/10.1016/S0021-9673(99)01190-5

    Article  CAS  PubMed  Google Scholar 

  16. Yeqin H, Xianliang L, Lei Z et al (2014) Mesoporous alumina as solid phase extraction adsorbent for the determination of abamectin and ivermectin in vegetables by liquid chromatography-tandem mass spectrometry. Anal Methods 6:4734–4741. https://doi.org/10.1039/C4AY00107A

    Article  Google Scholar 

  17. Ji RD, Zhao ZM, Zhu XY et al (2015) Determination of abamectin residues in fruit juice by fluorescence spectrum. Chim Oggi – Chem Today 33:1–4

  18. Bo-Kai C, Hsin-Hung C, Li-Wei N et al (2015) Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy. Appl Surf Sci 357:615–621. https://doi.org/10.1016/j.apsusc.2015.09.047

    Article  CAS  Google Scholar 

  19. Ruyi S, Xiangjiang L, Yibin Y (2018) Facing challenges in real-life application of surface-enhanced raman scattering: design and nanofabrication of surface-enhanced raman scattering substrates for rapid field test of food contaminants. J Agric Food Chem 26:6525–6543. https://doi.org/10.1021/acs.jafc.7b03075

    Article  CAS  Google Scholar 

  20. Kevin GS, Juan CS, Vidhu ST et al (2011) Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J Phys Chem C 115:1403–1409. https://doi.org/10.1021/jp106666t

    Article  CAS  Google Scholar 

  21. Ying-cui F, Liu H, Lei W et al (2013) Localized surface plasmon of Ag nanoparticles affected by annealing and its coupling with the excitons of Rhodamine 6G. J Vac Sci Technol A 31:041401. https://doi.org/10.1116/1.4811819

    Article  CAS  Google Scholar 

  22. Guiye S, Shujing Z, Shaopeng C et al (2012) Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection. Colloids Surf B 94:157–162. https://doi.org/10.1016/j.colsurfb.2012.01.037

    Article  CAS  Google Scholar 

  23. Abhijit R, Biswarup S (2019) Metal nanoparticle-decorated silicon nanowire arrays on silicon substrate and their applications. Microsc Microanal 25:1407–1415. https://doi.org/10.1017/S1431927619014946

    Article  CAS  Google Scholar 

  24. Abhijit R, Tapas KC, Biswarup S (2020) A simple method of growing endotaxial silver nanostructures on silicon for applications in surface enhanced Raman scattering (SERS). Appl Surf Sci 501:144225. https://doi.org/10.1016/j.apsusc.2019.144225

    Article  CAS  Google Scholar 

  25. Li Y, Koshizaki N, Wang H et al (2011) Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties. ACS Nano 5:9403–9412. https://doi.org/10.1021/nn203239n

    Article  CAS  PubMed  Google Scholar 

  26. Shang Q, Zheng T, Zhang Y et al (2012) Preparation of abamectin-loaded porous acrylic resin and controlled release studies. Iran Polym J 21:731–738. https://doi.org/10.1007/s13726-012-0076-4

    Article  CAS  Google Scholar 

  27. Zhiqing L, Runtian Q, Wei L et al (2017) Preparation of avermectin microcapsules with anti-photodegradation and slow-release by the assembly of lignin derivatives. New J Chem 41:3190–3195. https://doi.org/10.1039/C6NJ03795J

    Article  CAS  Google Scholar 

  28. Hong Y, Xiangzhong S, Kuangda T et al (2018) Quantitative determination of additive Chlorantraniliprole in Abamectin preparation: investigation of bootstrapping soft shrinkage approach by mid-infrared spectroscopy. Spectrochim Acta A 191:296–302. https://doi.org/10.1016/j.saa.2017.08.067

    Article  CAS  Google Scholar 

  29. Yan L, Yukun Q, Song L et al (2016) Preparation, characterization, and insecticidal activity of avermectin-grafted-carboxymethyl chitosan. Biomed Res Int 2016:9805675. https://doi.org/10.1155/2016/9805675

    Article  CAS  Google Scholar 

  30. Dias LAF, Jussiani EI, Appoloni CR (2019) Reference raman spectral database of commercial pesticides. J Appl Spectrosc 86:166–17532. https://doi.org/10.1007/s10812-019-00798-1

    Article  CAS  Google Scholar 

  31. Szetsen L, Wong JH, Liu SJ (2011) Fluorescence and Raman study of pH effect on the adsorption orientations of methyl red on silver colloids. Appl Spectrosc 65:996–1003. https://doi.org/10.1366/11-06273

    Article  CAS  Google Scholar 

  32. Wang Y, Lu N, Wang W et al (2013) Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res 6:159–166. https://doi.org/10.1007/s12274-013-0291-0

    Article  CAS  Google Scholar 

  33. Yufeng Y, Nishtha P, Stephanie HKY et al (2017) SERS-based ultrasensitive sensing platform: an insight into design and practical applications. Coord Chem Rev 337:1–33. https://doi.org/10.1016/j.ccr.2017.02.006

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by The Youth Incubator for Science and Technology Programe, managed by Youth Development Science and Technology Center—Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is “29/2019/ HĐ-KHCNT-VƯ.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Huu Ke or Dao Anh Tuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, N.H., Tuan, D.A., Thong, T.T. et al. Preparation of SERS Substrate with Ag Nanoparticles Covered on Pyramidal Si Structure for Abamectin Detection. Plasmonics 16, 2125–2137 (2021). https://doi.org/10.1007/s11468-021-01386-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01386-w

Keywords

Navigation