Skip to main content
Log in

Mechanochemical Formation of Solid Solution of Aluminum in Copper

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

X-ray diffraction analysis is used to study the mechanochemical formation of a solid solution in the Cu–10 wt % Al system. The formation of the solid solution is shown to occur via the formation of the CuAl2 and Cu9Al4 intermetallic compounds, which, in the course of mechanical activation, react with residual copper to form the Cu(Al), solid solution of aluminum in copper. Under the conditions of mechanical activation in a high-energy planetary ball mill, the two-phase product of the mechanochemical synthesis, namely, 90 wt % Cu(Al) + 10 wt % Cu9Al4 forms is formed. It is shown that the maximum reached Al concentration in the solid solution is 7.4 wt %. The microstresses of the solid solution are ~1%; the crystallite size reaches 35–40 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Feng, K. N. Ishihara, and P. H. Shingu, “The formation of metastable phases by mechanical alloying in the aluminum and copper system,” Metall. Trans. A 22, 2850 (1991).

    Google Scholar 

  2. S. M. Kahtan, T. N. Yaider, and N. I. Siti, “Study of the feasibility of producing Al–Ni intermetallic compounds by mechanical alloying,” Phys. Met. Metallogr., No. 8, 823–832 (2016).

  3. R. B. Schwarz, S. Srinivasan, and P. B. Desch, “Synthesis of metastable aluminum-based intermetallics by mechanical alloying,” Mater. Sci. Forum 8890, 595–602 (1992).

    Article  Google Scholar 

  4. L. D’Angelo, J. Ochoa, and G. González, “Comparative study for the formation of the NiAl, TiAl, FeAl intermetallic compounds by mechanical alloying,” J. Metastable Nanocryst. Mater. 2021, 231–236 (2004).

  5. A. R. Miedema, “On the heat of formation of solid alloys(II),” J. Less-Common Met. 46, 67–83 (1976). https://doi.org/10.1016/0022-5088(76)90180-6

    Article  CAS  Google Scholar 

  6. A. R. Miedema, P. F. de Chatel, and F. R. de Boer, “Cohesion in alloys—fundamentals, of a semi-empirical model,” Phys. B 100, 1–28 (1980). https://doi.org/10.1016/0378-4363(80)90054-6

    Article  CAS  Google Scholar 

  7. H. Bakker, “Miedema’s semi-empirical model for estimating enthalpies in alloys,” Mater. Sci. Briefings 1, 1–80 (1988).

    Google Scholar 

  8. T. F. Grigoreva, S. A. Kovaleva, V. I. Zhornik, S. V. Vosmerikov, P. A. Vityaz’, and N. Z. Lyakhov, “Copper-tin materials for tribotechnical purposes,” Fiz. Khim. Obrab. Mater., No. 6, 79–86 (2019).

  9. S. A. Kovaleva, P. A. Vityaz’, and T. F. Grigoreva, “Mechanochemical approach to increasing the microhardness of metallic tribological materials,” Chapter in monograph. Topical Problems of Strength, Ed. by V.V. Rubanik (Tipografiya “Pobeda”, Molodechno, 2020), Ch. 16, pp. 178–189.

  10. E. G. Avvakumov, Mechanical Methods of Activation of Chemical Processes (Nauka, Sib. otd, Novosibirsk, 1986) [in Russian].

  11. DIFFRACplus: EVA. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187 (Karlsruhe, 2008).

  12. Powder Diffraction File PDF4+ ICDD Release 2020.

  13. J. Laugier and B. Bochu, LMGP-Suite of Programs for the Interpretation of X-ray Experiments, ENSP. Grenoble: Lab. Materiaux genie Phys. (2003).

  14. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  15. DIFFRACplus: TOPAS. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187 (Karlsruhe, 2006).

  16. Phase Diagrams of Binary Metallic Systems. Vol. 1, Ed. by N.P. Lyakishev (Mashinostroenie, Moscow, 1996) [in Russian].

    Google Scholar 

  17. A. P. Savitskii, Liquid-Phase Sintering of Systems with Interacting Components (Nauka, Sib. otd, Novosibirsk, 1991) [in Russian].

  18. O. I. Tikhomirova, M. V. Pikunov, I. D. Marchukova, I. N. Tochenova, and I. P. Izotova, “Study of structural transformations during solidification of copper–gallium alloys,” Fiz.-Khim. Mekh. Mater. 5, No. 4, 455–458 (1969).

    CAS  Google Scholar 

  19. T. F. Grigor’eva, A. I. Ancharov, A. P. Barinova, S. V. Tsybulya, and N. Z. Lyakhov, “Structural transformations upon the mechanochemical interaction between solid and liquid metals,” Phys. Met. Metallogr. 107, No. 5, 457–465 (2009).

    Article  Google Scholar 

  20. T. F. Grigor’eva, S. A. Kovaleva, A. P. Barinova, P. A. Vityaz’, and N. Z. Lyakhov, “Study of the interaction of mechanochemically produced Cu–In solid solutions with liquid gallium and of the structure of metallic cements on their basis,” Phys. Met. Metallogr. 111, No. 1, 45–52 (2011).

    Article  Google Scholar 

  21. T. F. Grigor’eva, A. P. Barinova, N. Z. Lyakhov, S. A. Kovaleva, P. A. Vityaz’, and V. Šepelak, “Properties of metallic cements formed upon the interaction of mechanochemically synthesized copper alloys with liquid gallium and its eutectics: interaction of Cu/Bi composites with liquid gallium,” Phys. Met. Metallogr. 111, No. 3, 258–263 (2011).

    Article  Google Scholar 

  22. T. F. Grigor’eva, A. P. Barinova, E. Yu. Ivanov, and V. V. Boldyrev, “Influence of the enthalpy of mixing of the system on the course of formation of solid solutions during mechanical alloying,” Dokl. Akad. Nauk 350, No. 1, 59–60 (1996).

    Google Scholar 

  23. T. F. Grigor’eva, M. A. Korchagin, A. P. Barinova, and V. V. Boldyrev, “The role of intermediate intermetallic compounds in the mechanochemical synthesis of primary solid solutions,” Khim. Interesakh Ustoich. Razvit. 7, No. 5, 505–509 (1999).

    Google Scholar 

  24. T. F. Grigor’eva, A. P. Barinova, and N. Z. Lyakhov, “Mechanochemical synthesis of intermetallic compounds,” Russ. Chem. Rev. 70, No. 1, 52–71 (2001).

    Google Scholar 

  25. A. E. Vol, Composition and Properties of Binary Metallic Systems (Gos. Izd-vo fiz.-mat. lit-ry, Moscow, 1959), Vol. 1 [in Russian].

  26. V. S. Sinel’nikova, V. A. Podergin, and V. N. Rechkin, Aluminides (Naukova Dumka, Kiev, 1965) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-53-00037, and Belarusian Foundation for Basic Research, project no. Т20R-037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Grigoreva.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoreva, T.F., Petrova, S.A., Kovaleva, S.A. et al. Mechanochemical Formation of Solid Solution of Aluminum in Copper. Phys. Metals Metallogr. 122, 370–375 (2021). https://doi.org/10.1134/S0031918X21030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21030066

Keywords:

Navigation