Skip to main content
Log in

Nonstationary Energy Distribution of a Cascade of Knock-Out Atoms in a Solid with Allowance for their Bond Energy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Based on the solution of Boltzmann kinetic equation, an approximate expression is obtained for the distribution function describing a nonstationary energy distribution of a cascade of moving atoms. The development of the cascade is considered in materials consisting of identical atoms with allowance for the bond energy of atoms in the lattice (εd). It is assumed that the scattering of moving atoms is elastic and spherically symmetric in the center-of-mass system and the interaction cross section is inversely proportional to the velocity. The effect of the bond energy of atoms on the distribution function and related quantities is analyzed based on the obtained solution. In the limiting case of εd = 0, the approximate solution is in good agreement with the exact solution of the corresponding problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Leiman, Interaction of Radiation with a Solid and the Formation of Elementary Defects (Atomizdat, Moscow, 1979) [in Russian]

    Google Scholar 

  2. G. S. Vas, Fundamentals of Radiation Materials Science. Metals and Alloys (TEKhNOSFERA, Moscow, 2014) [in Russian].

  3. I. A. Portnykh and A. V. Kozlov, “Growth in vacancy voids at the initial stage of transient swelling,” Phys. Met. Metallogr. 119, 598–605 (2018).

    Article  CAS  Google Scholar 

  4. L. S. Vasil’ev and S. L. Lomaev, “Excess volume in materials with dislocations,” Phys. Met. Metallogr. 120, 709–718 (2019).

    Article  Google Scholar 

  5. A. R. Isinbaev, I. A. Portnykh, and A. V. Kozlov, “Influence of radiation porosity created in austenitic steel upon neutron irradiation on the concentration of intrinsic point defects,” Phys. Met. Metallogr. 121, 89–94 (2020).

    Article  CAS  Google Scholar 

  6. R. E. Voskoboinikov, “Radiation defects in aluminum: MD simulations of collision cascades in the bulk of material,” Phys. Met. Metallogr. 120, 1–8 (2019).

    Article  CAS  Google Scholar 

  7. R. E. Voskoboinikov, “Radiation defects in aluminum: MD simulations of collision cascades in the bulk of material,” Phys. Met. Metallogr. 120, 9–15 (2019).

    Article  CAS  Google Scholar 

  8. R. E. Voskoboinikov, “Molecular dynamics simulations of surface collision cascades in nickel,” Phys. Met. Metallogr. 121, 7–13 (2020).

    Article  CAS  Google Scholar 

  9. R. E. Voskoboinikov, “Simulation of primary radiation damage in nickel,” Phys. Met. Metallogr. 121, 14–20 (2020).

    Article  CAS  Google Scholar 

  10. A. I. Ryazanov and E. V. Metelkin, “Concerning the theory of radiation cascades of atomic collisions in a solid with an arbitrary interatomic interaction potential,” Radiat. Eff. Defects Solids 52, 15–23 (1980).

    Article  CAS  Google Scholar 

  11. Y. Sato, S. Kojimo, T. Yoshiie, and M. Kiritani, “Criterion of subcascade formation in metals from atomic collision calculation,” J. Nucl. Mater., No. 179–181, 901–904 (1991).

  12. Y. Sato, T. Yoshiie, and M. Kiritani, “Binary collision calculation of subcascade structure and its correspondence to observe subcascade defects in 14 MeV neutron irradiated copper,” J. Nucl. Mater., Nos. 191194, 1101–1104 (1992).

    Google Scholar 

  13. E. V. Metelkin and A. I. Ryazanov, “Threshold energy of formation of subcascades,” At. Energy 83, 653–657 (1997).

    Article  CAS  Google Scholar 

  14. E. V. Metelkin, A. I. Ryazanov, and E. V. Semenov, “Developing new theoretical models of the formation of atomic collision cascades and subcascades in irradiated solids,” J. Exp. Theor. Phys. 134, 394–404 (2008).

    Article  Google Scholar 

  15. A. I. Ryazanov, E. V. Metelkin, and E. V. Semenov, “Modeling of cascade and sub-cascade formation at high PKA energies in irradiated fusion structural materials,” J. Nucl. Mater., Nos. 386388, 132–134 (2009).

    Google Scholar 

  16. E. V. Metelkin, M. V. Lebedeva, and A. V. Chernyaev, “Energy distribution of relativistic electrons decelerating in matter,” At. Energ. 125,184–186 (2018).

    Google Scholar 

  17. A. A. Aleksandrov, V. A. Akatev, E. V. Metelkin, and E. J. Barycheva, “Develop a model to study the energy distribution of cascades of atomic collisions,” Herald of the Bauman Moscow State Technical University, Ser. Nat. Sci., No. 1, 27–36 (2019).

  18. J. Lindhard, N. Vibeke, and M. Scharff, “Approximation method in classical scattering by screened Coulomb fields,” Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser 36, 1–32 (1968).

    Google Scholar 

  19. E. V. Metelkin, A. N. Manvelov, A. Ya. Ponomarev, and V. I. Shmyrev, “Model of development of knock-on atom cascades in solids,” Phys. Met. Metallogr. 120, 819–823 (2019).

    Article  Google Scholar 

  20. A. A. Aleksandrov, V. A. Akatev, E. V. Metelkin, and E. J. Barycheva, “Investigation of the nonstationary energy distribution of an atomic collision cascad,” Herald of the Bauman Moscow State Technical University, Series Natural Sciences, No. 6, 40–49 (2019).

    Article  Google Scholar 

  21. E. V. Metelkin, V. A. Akat’ev, V. I. Shmyrev, and E. Yu. Barysheva, “Nonstationary spatial energy distribution of a cascade of knock-out atoms in a solid,” J. Exp. Theor. Phys. 156, 321–328 (2019).

    Article  Google Scholar 

  22. A. I. Isakov, M. V. Kazarnovskii, Yu. A. Medvedev, and E. V. Metelkin, Unsteady Neutron Moderation. Basic Patterns and Some Applications (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  23. A. I. Akhiezer and I. A. Akhiezer, “On the kinetic theory of a cascade of collisions in a solid,” KhFTI (1975), Preprint, p. 35.

  24. A. I. Ryazanov and E. V. Metelkin, “On the theory of the formation of point defects in a radiation cascade of collisions of atoms with an arbitrary interaction potential,” (IAE, 1979), Preprint, p. 35.

    Google Scholar 

  25. G. Beitman and A. Erdeii, Tables of Integral Transforms 1. Fourier, Laplace, Mellin Transformations (Nauka, Moscow, 1969), p. 343.

    Google Scholar 

  26. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products (Nauka, Moscow, 1108) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Metelkin.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metelkin, E.V., Lebedeva, M.V. Nonstationary Energy Distribution of a Cascade of Knock-Out Atoms in a Solid with Allowance for their Bond Energy. Phys. Metals Metallogr. 122, 416–421 (2021). https://doi.org/10.1134/S0031918X21040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21040074

Keywords:

Navigation