Skip to main content
Log in

Microstructural Evolution of a Cast ZK60 Mg Alloy/SiCp Surface Composites Induced by Friction Stir Process

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In the fabrication of light weight structural materials, the as-cast ZK60 magnesium alloy plays a vital role in the replacement of aluminum alloy. As the wear and friction properties are poor for magnesium alloys, it is very much essential to adopt surface engineering to enhance these properties. Friction stir processing is one of the promising thermo-mechanical processing techniques that alters the grain refinement and surface properties of the material. This investigation is made to understand the impacts of tool traverse speed ranges from 5 to 25 mm/min in cast ZK60 and FSPed/ZK60/SiCp magnesium alloy friction stir processed zone formation. It is found that the FSP made by using the high tool traverse speed of 10 mm/min exhibited higher hardness (121.2HV) and uniform particle distribution in the processed zone. This may be attributed to the dispersion and grain boundary strengthening. Also, this study is further proceeded to transient temperature distribution during FSPed/ZK60 Mg alloy by using Finite Element method. From simulation, the maximum temperature determined is 462°C, which is notably less compared to the melting temperature of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. W Wang, Q-y. Shi, P. Liu, H-k. Li, and T. Li, “A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing,” J. Mater. Process. Technol. 209, 2099–2103 (2009). https://doi.org/10.1016/j.jmatprotec.2008.05.001

    Article  CAS  Google Scholar 

  2. P. Cavaliere and P. P. De Marco, “Superplastic behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die cast,” J. Mater. Process. Technol. 184, 77–83 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.005

    Article  CAS  Google Scholar 

  3. Y. Li, L. E. Murr and J. C. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mater. Sci. Eng., A 271, 213–223 (1999). https://doi.org/10.1016/S0921-5093(99)00204-X

    Article  Google Scholar 

  4. R. S. Mishra, Z. Y. Ma, and I. Charit, “Friction Stir Processing: A novel technique for fabrication of surface composite,” Mater. Sci. Eng., A 341, 307–310 (2003). https://doi.org/10.1016/S0921-5093(02)00199-5

    Article  Google Scholar 

  5. Z. Y. Ma, R. S. Mishra, and M. W. Mahoney, “Superplastic deformation behaviour of friction stir processed 7075Al alloy,” Acta Mater. 50, 4419–4430 (2002). https://doi.org/10.1016/S1359-6454(02)00278-1

    Article  CAS  Google Scholar 

  6. P. Asadi, G. Faraji, and M. K. Besharati, “Producing of AZ91/SiC composite by friction stir processing (FSP),” Int. J. Adv. Manuf. Techol. 51, pp. 247–260 (2010). https://doi.org/10.1007/s00170-010-2600-z

    Article  Google Scholar 

  7. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “MWCNTs/AZ31 surface composites fabricated by friction stir processing,” Mater. Sci. Eng., A 419, 344–348 (2006). https://doi.org/10.1016/j.msea.2006.01.016

    Article  CAS  Google Scholar 

  8. C. J. Lee, J. C. Huang, and P. J. Hsieh, “Mg based nano-composites fabricated by friction stir processing,” Scr. Mater. 54, 1415–1420 (2006). https://doi.org/10.1016/j.scriptamat.2005.11.056

    Article  CAS  Google Scholar 

  9. P. B. Berbon, W. H. Bingel, R. S. Mishra, C. C. Bampton, and M. W. Mahoney, “Friction stir processing: a tool to homogenize nanocomposite aluminum alloys,” Scr. Mater. 44, 61–66 (2001). https://doi.org/10.1016/S1359-6462(00)00578-9

    Article  CAS  Google Scholar 

  10. R. Abdi Behnagh, M. K. Besharati Givi, and M. Akbari, “Mechanical properties, corrosion resistance, and microstructural changes during friction stir processing of 5083 aluminum rolled plates,” Mater. Manuf. Process. 27, 636–640 (2012). https://doi.org/10.1080/10426914.2011.593243

    Article  CAS  Google Scholar 

  11. A. H. Feng, B. L. Xiao, Z. Y. Ma, and R. S. Chen, “Effect of Friction Stir Processing Procedures on Microstructure and Mechanical Properties of Mg–Al–Zn casting,” Metall. Mater. Trans. A 40, 2447–2456 (2009). https://doi.org/10.1007/s11661-009-9923-0

    Article  CAS  Google Scholar 

  12. H. Fujii, L. Cui, M. Maeda, and K. Nogi, “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys,” Mater. Sci. Eng., A 419, 25–31 (2006). https://doi.org/10.1016/j.msea.2005.11.045

    Article  CAS  Google Scholar 

  13. M. Azizieh, A. H. Kokabi, and P. Abachi, “Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing,” Mater. Des. 32, 2034–2041 (2011). https://doi.org/10.1016/j.matdes.2010.11.055

    Article  CAS  Google Scholar 

  14. H. S. Arora, H. Singh, and B. K. Dhindaw, “Wear behaviour of a Mg alloy subjected to friction stir processing,” Wear 303, 65–77 (2013). https://doi.org/10.1016/j.wear.2013.02.023

    Article  CAS  Google Scholar 

  15. R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing, “Mater. Sci. Eng. 50, 1–78 (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  16. K. Elangovan and V. Balasubramanian, “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminum alloy,” Mater. Sci. Eng., A 459, 7–18 (2007). https://doi.org/10.1016/j.msea.2006.12.124

    Article  CAS  Google Scholar 

  17. A. Shailesh Rao and N. Yuvaraja, “Comparison of appearance, microstructure and tensile properties during friction stir welding processes of Al–Si alloys,” Phys. Met. Metallogr. 118, 716–722 (2017). https://doi.org/10.1134/S0031918X17070092

    Article  CAS  Google Scholar 

  18. C. M. Chen and R. Kovacevic, “Finite element modeling of friction stirs welding—thermal and thermo-mechanical analysis,” Int. J. Mach. Tools Manuf. 43, 1319–1326 (2003). https://doi.org/10.1016/S0890-6955(03)00158-5

    Article  Google Scholar 

  19. C. M. Chen and R. Kovacevic, “Parametric finite element analysis of stress evolution during friction stirs welding,” J. Eng. Manuf. 220, 1359–1371 (2006). https://doi.org/10.1243/09544054JEM324

    Article  CAS  Google Scholar 

  20. Ghader Faraji, Omid Dastani, and S. Ali Asghar Akbari Mousavi, “Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP,” J. Mater. Eng. Perform. 20, 1583–1590 (2011). https://doi.org/10.1007/s11665-010-9812-0

    Article  CAS  Google Scholar 

  21. C. I. Chang, X. H. Du, and J. C. Huang, “Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing,” Scr. Mater. 57, 209–212 (2007). https://doi.org/10.1016/j.scriptamat.2007.04.007

    Article  CAS  Google Scholar 

  22. Yang Yongjing, P. Hua, X. Li, Chen Ke, and Zhou Wei, “Effect of multipass on microstructure and impact toughness of as-cast Al–20Si alloy via friction stir processing,” Phys. Met. Metallogr. 120, 1126–1132 (2019). https://doi.org/10.1134/S0031918X1911005X

    Article  Google Scholar 

  23. H.T. Naeem, K.S. Mohammed, and K.R. Ahmad, “Effect of friction stir processing on the microstructure and hardness of an aluminum-zinc-magnesium-copper alloy with nickel additives,” Phys. Met. Metallogr. 116, 1035–1046 (2015). https://doi.org/10.1134/S0031918X15100051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vignesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Vignesh Kumar, Veerappan, A., Padmanaban, G. et al. Microstructural Evolution of a Cast ZK60 Mg Alloy/SiCp Surface Composites Induced by Friction Stir Process. Phys. Metals Metallogr. 122, 403–415 (2021). https://doi.org/10.1134/S0031918X21040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21040049

Keywords:

Navigation