Skip to main content
Log in

Microstructure Evolution Process of 7136 Aluminum Alloy during Aging Treatment

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The aging hardening and evolution of precipitation phase of 7136 aluminum alloy during aging treatment were investigated. The research revealed that hardness of 7136 aluminum alloy firstly increases and then slightly decreases with increasing aging time, and reaches maximum values, which are about 198 HB when aging for 24 h. In addition, the dissolution peak of GP zones shifts towards high temperatures and coincides with that is characteristic of the dissolution peak of η' phase in the DSC curve; meanwhile, the dissolution peak area of η′ phase enlarges with increasing aging time. During aging progressing, the GP zones formed at first, then gradually dissolved, transformed into the η' phase, and eventually evolved into the η phase. Furthermore, the average size of the precipitated phase within the crystal increased from 3 to 5 nm, and the average size of grain boundary precipitation phase particles increases from 10 nm to about 20 nm with increasing aging time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. N. Petrova, I. G. Brodova, S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, 1221–1227 (2019).

    Article  CAS  Google Scholar 

  2. P. K. Shurkin, N. A. Belov, A. F. Musin, and M. E. Samoshina, “Effect of calcium and silicon on the character of solidification and strengthening of the Al–8% Zn–3% Mg alloy,” Phys. Met. Metallogr. 121, 135–142 (2020).

    Article  CAS  Google Scholar 

  3. I. G. Shirinkina and I. G. Brodova, “Annealing-induced structural–phase transformations in an Al–Zn–Mg–Fe–Ni alloy after high pressure torsion,” Phys. Met. Metallogr. 121, 344–351 (2020).

    Article  CAS  Google Scholar 

  4. W. H. Sun, Y. A. Zhang, and X. W. Li, “Effect of solid solution treatment on microstructure and Properties of 7136 aluminum alloy,” J. Aeronaut. Mater. 34, 35–41 (2014).

    CAS  Google Scholar 

  5. H. Y. Li, L. jia, and J. N. Huang, “Precipitation behavior and properties of extruded 7136 aluminum alloy under different aging treatments,” Chin. J. Aeronaut. (2020) (in press).

  6. I. Kalemba, C. Hamilton, and S. Dymek, “Natural aging in friction stir welded 7136-T76 aluminum alloy,” Mater. Des. 60, 295–301 (2014).

    Article  CAS  Google Scholar 

  7. J. Z. Chen, L Zhen, S. J. Yang, and S. L. Dai, “Effects of precipitates on fatigue crack growth rate of AA7055 aluminum alloy,” Trans. Nonferrous Met. Soc. China 20, 2209−2214 (2010).

    Article  CAS  Google Scholar 

  8. T. Wang, Z. M. Yin, K, Shen, J. Li, and J. W. Huang, “Single-aging characteristics of 7055 aluminum alloy,” Trans. Nonferrous Met. Soc. China 17, 548−552 (2007).

    Article  Google Scholar 

  9. Y. Komura and K. Tokunaga, “Structural studies of stacking variants in Mg-base Friauf–Laves phases,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B 36, 1548−1554 (1980).

    Article  Google Scholar 

  10. J. G. Tang, H. Chen, and X. M. Zhang, “Influence of quench-induced precipitation on aging behavior of Al–Zn–Mg–Cu alloy,” Trans. Nonferrous Met. Soc. China. 22, 1255–1263 (2012).

    Article  CAS  Google Scholar 

  11. L. K. Berg, J. Gjonnes, V. Hansen, and X. Z. Li, “GP-zone in Al–Zn–Mg alloys and their role in artificial aging,” Acta Mater. 49, 3443–3451 (2001).

    Article  CAS  Google Scholar 

  12. C. Garcia-Cordovilla and E. Louis, “A differential scanning calorimetry investigation of the effects of zinc and copper on solid state reactions in Al–Zn–Mg–Cu alloys,” Mater. Sci. Eng., A 132, 135–141 (1991).

    Article  Google Scholar 

  13. X. Z. Li, V. Hansen, J. Gjonnes, “HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys,” Acta Mater. 47, 2651–2659 (1999).

    Article  CAS  Google Scholar 

  14. X. M. Chen, R. G. Song, and H. X. Song, “Aging study of   7075 aluminum alloy with “twin peaks”,” Trans. Mater. Heat Treat. 31, 80–84 (2010).

    Google Scholar 

  15. M. H. Li, Y. Q. Yang, and Z. Q. Feng, “Precipitation sequence of η phase along low-angle grain boundaries in Al–Zn–Mg–Cu alloy during artificial aging,” Trans. Nonferrous Met. Soc. China 24, 2061–2066 (2014).

    Article  CAS  Google Scholar 

  16. C. Y. Wan, J. X. Chen, and X. B. Yang, “7xxx series Al–Zn–Mg–Cu aluminum alloy early and middle aging study on enhanced precipitated phase,” J. Chin. Electron Microsc. Soc. 29, 455–460 (2010).

    CAS  Google Scholar 

  17. J. X. Zang, K. Zhang, and S. L. Dai, “Precipitation behavior and properties of a new high strength Al–Zn–Mg–Cu alloy,” Trans. Nonferrous Met. Soc. China 22, 2638−2644 (2012).

    Article  CAS  Google Scholar 

  18. Y. Liu, Y. Huang, and Z. Xiao, “Effect of ultrasonic casting on microstructure and its genetic effects on corrosion performance of 7085 aluminum alloy,” Phys. Met. Metallogr. 118, 1105–1112 (2017).

    Article  CAS  Google Scholar 

  19. I. G. Shirinkina and I. G. Brodova, “Annealing-Induced structural-phase transformations in an Al–Zn–Mg–Fe–Ni alloy after high pressure torsion,” Phys. Met. Metallogr. 121, 344–351 (2020).

    Article  CAS  Google Scholar 

  20. Y. Q. Fan, K. Wen, and Z. H. Li, “Microstructure of as-extruded 7136 aluminum alloy and its evolution during solution treatment,” Rare Met. 36, 256–262 (2017).

    Article  CAS  Google Scholar 

  21. Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, and Y. T. Zhu, “Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing,” Acta Mater. 52, 4589–4599 (2004).

    Article  CAS  Google Scholar 

  22. X. G. Fan, D. M. Jiang, Q. C. Meng, and L. Zhong. “The microstructure evolution of an Al–Zn–Mg–Cu alloy during homogenization,” Mater. Lett. 60, 1475-1479 (2006).

    Article  CAS  Google Scholar 

  23. Z. Guo and W. Sha, “Quantification of precipitation hardening and evolution of precipitates,” Mater. Trans. 43, 1273–1282 (2002).

    Article  CAS  Google Scholar 

  24. Z. W. Du, Z. M. Sun, B. L. Shao, T. T. Zhou, and Q. Q. Chen, “Quantitative evaluation of precipitates in an Al–Zn–Mg–Cu alloy after isothermal aging,” Mater. Charact. 56, 121–128 (2006).

    Article  CAS  Google Scholar 

Download references

Funding

The financial support for this work is provided by the National Natural Science Foundation of China (no. 51871111), the Natural Science Foundation of Shandong Province (grant no. ZR2018LE001), the Science and Technology Program of University of Jinan (nos. XKY2036, XKY1713), the Key Research and Development Program of Shandong Province (Grant no. 2019GGX102008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Leng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran Wang, Ren, B., Dong, Y. et al. Microstructure Evolution Process of 7136 Aluminum Alloy during Aging Treatment. Phys. Metals Metallogr. 122, 383–388 (2021). https://doi.org/10.1134/S0031918X21040128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21040128

Keywords:

Navigation