Skip to main content
Log in

Accelerated magnetosonic lump wave solutions by orbiting charged space debris

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The excitations of nonlinear magnetosonic lump waves induced by orbiting charged space debris particles in the Low Earth Orbital (LEO) plasma region are investigated in the presence of the ambient magnetic field. These nonlinear waves are found to be governed by the forced Kadomtsev–Petviashvili-type model equation, where the forcing term signifies the source current generated by different possible motions of charged space debris particles in the LEO plasma region. Different analytic lump wave solutions that are stable for both slow and fast magnetosonic waves in the presence of charged space debris objects are found for the first time. The dynamics of exact pinned accelerated magnetosonic lump waves is explored in detail. Approximate magnetosonic lump wave solutions with time-dependent amplitudes and velocities are analysed through perturbation methods for different types of localized space debris functions, yielding approximate pinned accelerated magnetosonic lump wave solutions. These new results may pave new directions in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Klinkrad, H.: Space Debris: Models and Risk Analysis. Chichester UK (2006)

  2. Sampaio, J.C., Wnuk, E., Moraes, R.V., Fernandes, S.S.: Resonant orbital dynamics in LEO region: space debris in focus. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/929810

    Article  Google Scholar 

  3. Horányi, M.: Charged dust dynamics in the solar system. Ann. Rev. Astron. Astrophys. 34, 383–418 (1996). https://doi.org/10.1146/annurev.astro.34.1.383

    Article  Google Scholar 

  4. Technical Report on Space Debris. United Nations Publication, ISBN 92-1-100813-1, New York. https://digitallibrary.un.org/record/276455?ln=en (1999)

  5. Sen, A., Tiwari, S., Mishra, S., Kaw, P.: Nonlinear wave excitations by orbiting charged space debris objects. Adv. Space Res. 56, 429–435 (2015). https://doi.org/10.1016/j.asr.2015.03.021

    Article  Google Scholar 

  6. Mukherjee, A., Acharya, S.P., Janaki, M.S.: Dynamical study of nonlinear ion acoustic waves in presence of charged space debris at Low Earth Orbital (LEO) plasma region. Astrophys. Space Sci. 366, 7 (2021). https://doi.org/10.1007/s10509-020-03914-2

    Article  MathSciNet  Google Scholar 

  7. Acharya, S.P., Mukherjee, A., Janaki, M.S.: arXiv:2010.06901v2

  8. Kulikov, I., Zak, M.: Detection of Moving Targets Using Soliton Resonance Effect. Adv. Remote Sens. 1, 3 (2012). https://doi.org/10.4236/ars.2012.13006

    Article  Google Scholar 

  9. Truitt, A.S., Hartzell, C.M.: Simulating plasma solitons from orbital debris using the forced Korteweg–de Vries equation. J. Spacecr. Rockets 57, 5 (2020). https://doi.org/10.2514/1.A34652

    Article  Google Scholar 

  10. Truitt, A.S., Hartzell, C.M.: Three-dimensional Kadomtsev–Petviashvili damped forced ion acoustic solitary waves from orbital debris. J. Spacecr Rockets. https://doi.org/10.2514/1.A34805

  11. Tiwari, S.K., Sen, A.: Wakes and precursor soliton excitations by a moving charged object in a plasma. Phys. Plasmas 23, 022301 (2016). https://doi.org/10.1063/1.4941092

    Article  Google Scholar 

  12. Tiwari, S.K., Sen, A.: Fore-wake excitations from moving charged objects in a complex plasma. Phys. Plasmas 23, 100705 (2016). https://doi.org/10.1063/1.4964908

    Article  Google Scholar 

  13. Jaiswal, S., Bandyopadhyay, P., Sen, A.: Experimental observation of precursor solitons in a flowing complex plasma. Phys. Rev. E 93, 041201(R) (2016). https://doi.org/10.1103/PhysRevE.93.041201

    Article  Google Scholar 

  14. Arora, G., Bandyopadhyay, P., Hariprasad, M.G., Sen, A.: Effect of size and shape of a moving charged object on the propagation characteristics of precursor solitons. Phys. Plasmas 26, 093701 (2019). https://doi.org/10.1063/1.5115313

    Article  Google Scholar 

  15. Mandi, L., Saha, A., Chatterjee, P.: Dynamics of ion-acoustic waves in Thomas-Fermi plasmas with source term. Adv. Space Res. 64, 427–435 (2019). https://doi.org/10.1016/j.asr.2019.04.028

  16. Kumar, A., Sen, A.: Precursor magneto-sonic solitons in a plasma from a moving charge bunch. New J. Phys. (2020). https://doi.org/10.1088/1367-2630/ab9b6b

    Article  Google Scholar 

  17. Ruderman, M.S.: Kadomtsev-Petviashvili equation for magnetosonic waves in Hall plasmas and soliton stability. Phys. Scr. (2020). https://doi.org/10.1088/1402-4896/aba3a9

    Article  Google Scholar 

  18. Huba, J.D.: Hall magnetohydrodynamics in space and laboratory plasmas. Phys. Plasmas 2, 2504 (1995). https://doi.org/10.1063/1.871212

    Article  Google Scholar 

  19. Bandyopadhyay, R., Sorriso-Valvo, L., Chasapis, A., Hellinger, P., Matthaeus, W.H., Verdini, A., Landi, S., Franci, L., Matteini, L., Giles, B.L., Gershman, D.J., Moore, T.E., Pollock, C.J., Russell, C.T., Strangeway, R.J., Torbert, R.B., Burch, J.L.: In situ observation of hall magnetohydrodynamic cascade in space plasma. Phys. Rev. Lett. (2020). https://doi.org/10.1103/PhysRevLett.124.225101

    Article  Google Scholar 

  20. Yong, X., Ma, W.X., Huang, Y., Liu, Y.: Lump solutions to the Kadomtsev–Petviashvili I equation with a self-consistent source. Comput. Math. Appl. 75, 3414–3419 (2018). https://doi.org/10.1016/j.camwa.2018.02.007

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015). https://doi.org/10.1016/j.physleta.2015.06.061

    Article  MathSciNet  MATH  Google Scholar 

  22. Anco, S.C., Gandarias, M.L., Recio, E.: Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with p-power nonlinearities in two dimensions. Theor. Math. Phys. 197, 1393–1411 (2018). https://doi.org/10.1134/S004057791810001X

    Article  MATH  Google Scholar 

  23. Zhang, L.H.: Conservation laws of the (2 + 1)-dimensional KP equation and Burgers equation with variable coefficients and cross terms. Appl. Math. Comput. 219, 4865–4879 (2013). https://doi.org/10.1016/j.amc.2012.10.063

    Article  MathSciNet  MATH  Google Scholar 

  24. Ott, E., Sudan, R.N.: Damping of solitary waves. Phys. Fluids 13, 1432 (1970). https://doi.org/10.1063/1.1693097

    Article  Google Scholar 

  25. Janaki, M.S., Som, B.K., Dasgupta, B., Gupta, M.R.: K–P burgers equation for the decay of solitary magnetosonic waves propagating obliquely in a warm collisional plasma. J. Phys. Soc. Jpn. 60, 2977–2984 (1991). https://doi.org/10.1143/JPSJ.60.2977

    Article  Google Scholar 

  26. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev—Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021). https://doi.org/10.1007/s11071-021-06357-8

    Article  Google Scholar 

  27. Yu, J., Wang, F., Ma, W., Sun, Y., Khalique, C.M.: Multiple-soliton solutions and lumps of a (3 + 1)-dimensional generalized KP equation. Nonlinear Dyn. 95, 1687–1692 (2019). https://doi.org/10.1007/s11071-018-4653-8

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Siba Prasad Acharya acknowledges the financial support received from Department of Atomic Energy (DAE) of Government of India, during this work through institute fellowship scheme. Abhik Mukherjee acknowledges Indian Statistical Institute, Kolkata, India, for the financial support during the progress of the work.

Funding

Funding was provided by Department of Atomic energy, Government of India and Indian Statistical Institute, Kolkata, India

Author information

Authors and Affiliations

Authors

Contributions

Siba Prasad Acharya (first author) is lead author; Abhik Mukherjee and M. S. Janaki are supporting authors.

Corresponding author

Correspondence to S. P. Acharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, S.P., Mukherjee, A. & Janaki, M.S. Accelerated magnetosonic lump wave solutions by orbiting charged space debris . Nonlinear Dyn 105, 671–689 (2021). https://doi.org/10.1007/s11071-021-06594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06594-x

Keywords

Navigation